
i

Solving MPSGE Models Using GEMPACK1

14 July 2004

Laurent Cretegny, Mark Horridge, Ken Pearson
Centre of Policy Studies, Monash University

Thomas Rutherford
Department of Economics, University of Colorado

1 A short and preliminary version of this paper dated May 2004 was presented at the GTAP conference
in Washington D.C. in June 2004.

i

Abstract
MPSGE is a non-algebraic language for the formulation of applied general equilibrium models. When
you build a model using MPSGE you do not need to specify equations, but you instead work with a
tabular representation of the model. The input tables make reference to source statistics, typically
drawn from a single benchmark year. MPSGE input data describing your model characterize
technology, preferences, tax rates, and factor endowments. These data, together with a set of
equilibrium conditions, define the equilibrium framework.

MPSGE is a framework designed primarily to permit rapid prototyping of applied models. The
compact, non-algebraic format can substantially improve productivity through the automated
generation of demand and supply functions. This approach reduces the scope for errors and simplifies
sensitivity analysis of results with respect to model structure. To take advantage of the MPSGE
framework, a user must learn the syntax and conventions of the MPSGE language.

The purpose of this paper is to introduce and document a new program (called MGE2GP) that can be
used to convert MPSGE representations of models to GEMPACK. If you write down a model in
MPSGE form, and create a data file for the model, you can use this program to convert your model to
GEMPACK and then use GEMPACK software to solve the model. This paper contains detailed
instructions for carrying out these steps.

The paper contains a self-contained introduction to the MPSGE language, illustrated via several
example models. It also contains detailed hands-on instructions for solving these example models using
GEMPACK. The aim is to make the paper accessible to all general equilibrium modellers. In particular,
we do not assume that readers are already familiar with MPSGE or GEMPACK. Many of the example
models can be solved using the Demonstration Version of GEMPACK which can be downloaded (at no
cost) from the web.

ii

1. INTRODUCTION 1

1.1 Downloading MGE2GP and Associated Models and Documentation 2

1.2 Release 8 or Later of GEMPACK is Required 3

1.3 Downloading the Demonstration Version of GEMPACK 3

1.4 Changes from Earlier Versions of MGE2GP 3

1.5 Feedback on This Document 3

2. INTRODUCTION TO MPSGE VIA SEVERAL EXAMPLE MODELS 5

2.1 An Introductory Example - TWOBYTWO.MGE 5
2.1.1 Calibration of TWOBYTWO 8
2.1.2 Converting TWOBYTWO to GEMPACK 9

2.2 Three Simple Models 9
2.2.1 Intermediate Demand – SJMGE.MGE 10
2.2.2 Joint Production and Nests – JOINT.MGE 12
2.2.3 Small Open Economy – OPEN.MGE 14
2.2.4 Summary of MPSGE Features Introduced So Far 17

2.3 Adding Exogenous Taxes 17
2.3.1 Taxes on Inputs – TAXIN.MGE 18
2.3.2 Taxes on Outputs – TAXOUT.MGE 19
2.3.3 Tariffs and Export Subsidies – TARIFF.MGE 19
2.3.4 Calibrating With Taxes 20

2.4 Modifying Behaviour via Rationing 20
2.4.1 Linking Wages to Consumer Prices – EMPLOY.MGE 20
2.4.2 Allowing Trade Deficit or Surplus – BOP.MGE 23

2.5 Endogenous Taxes 24
2.5.1 Endogenous Taxes Example – DIFFTAX.MGE 24

2.6 Other Advanced MPSGE Features 25
2.6.1 Exception Handling 25
2.6.2 Sets of Nests 25
2.6.3 Spanning Operator 26

2.7 Scope of MPSGE 26

2.8 Documentation of MPSGE Syntax 26

3. CONVERTING MPSGE MODELS TO GEMPACK 27

3.1 Converting an MGE File to GEMPACK TAB and Command Files 27
3.1.1 Running MGE2GP to Convert to GEMPACK 27
3.1.2 Nests 28

3.2 The Equations and the TAB File Written 29
3.2.1 The Equations 29

iii

3.2.2 Equations for a $demand: Block 29
3.2.3 Equations for a $prod: Block 30
3.2.4 Supply, Demand and Market Clearing Equations 31
3.2.5 The Equations in the TAB File 33
3.2.6 Grouping of Equations in the TAB File 33
3.2.7 Tax Variables in the TAB File 34

3.3 The MGE2GP Code 35

4. SIMULATIONS WITH THE TWOBYTWO MODEL USING GEMPACK 36

4.1 Installing Program MGE2GP 36

4.2 Working at the Command Line 36
4.2.1 Run MGE2GP to Convert the MGE File to GEMPACK 36
4.2.2 Run TABLO – Processes the TAB File 37
4.2.3 Run GEMSIM to Solve the Model 37

4.3 Using a Windows Version of GEMPACK 37
4.3.1 Set the Working Directory 38
4.3.2 Run MGE2GP to Convert the MGE File to GEMPACK 38
4.3.3 Run TABLO – Processes the TAB File 38
4.3.4 Run GEMSIM to Solve the Model 39

4.4 Looking at the Results using ViewSOL 39

4.5 Looking at the Command File 41
4.5.1 Comments in Command Files 42
4.5.2 The Closure 42
4.5.3 The Shocks 42
4.5.4 The Rest of the Command File 42
4.5.5 Why Have a Command File? 43

4.6 Other Simulations with TWOBYTWO 43
4.6.1 Increasing the Labour Endowment – TWOBYTWOLB.CMF 43
4.6.2 Other Simulations with TWOBYTWO 45

4.7 Looking at the TAB File TWOBYTWO.TAB 45

5. SOLVING THE OTHER EXAMPLE MODELS USING GEMPACK 48

5.1 The SJMGEHSIM Simulation with the SJMGE Model 48
5.1.1 Looking at the Starting Header Array File SJMGE.HAR 48
5.1.2 The Updated Data SJMGEHSIM.UPD 49

5.2 Increasing Endowment of Labor in SJMGE – SJMGELB.CMF 50
5.2.1 The Updated Data after the SJMGELB.CMF Simulation 51
5.2.2 Reversing the SJMGELB.CMF Simulation – SJMGELBBACK.CMF 52
5.2.3 Checking the SJMGELBBACK.CMF Results 53
5.2.4 Checking the Updated Data after the SJMGELBBACK.CMF Simulation 54

5.3 Carrying Out Simulations with the Other Example Models 55
5.3.1 A Simulation with EMPLOY 55
5.3.2 Reversal Simulations 56
5.3.3 The Standard Closure 57
5.3.4 Closure Changes 57

5.4 Other Features of GEMPACK 57

iv

5.4.1 AnalyseGE for Analysing Simulation Results 57
5.4.2 TABLO-Generated Programs for Simulations 58
5.4.3 Solution Methods 58

6. LARGER EXAMPLE MODELS 59

6.1 The MINIMAL Model 59
6.1.1 Noteworthy Features in MINLMGE.MGE 60
6.1.2 Reversals of the Simulations 60
6.1.3 Technical Change not in MINLMGE.MGE 61

7. BUILDING YOUR OWN MODELS 62

7.1 Must the Starting Data Represent an Equilibrium? 62

7.2 Preparing Data in a Header Array File 62
7.2.1 Data on the File 62
7.2.2 Sets on the File 63
7.2.3 Names of Headers 63
7.2.4 Introduction to Header Array Files 63

7.3 Why Use Expressions in q: Fields? 63

7.4 Arranging to Get All Relevant Data Updated 64
7.4.1 Avoid Numbers in Fields 65
7.4.2 Use Names of Full Rank in q: Fields Which are Not Expressions 65
7.4.3 When p: Fields Can Not Be Updated 66
7.4.4 When m: Fields Can Not Be Updated 67
7.4.5 Other Cases When Fields Cannot Be Updated 67

7.5 Use GAMS Syntax for Expressions and Equations in MGE Files 67

7.6 Writing $constraint: Equations 68
7.6.1 Shifters in $constraint: Equations 68
7.6.2 Variable Names in $constraint: Equations may be Changed by MGE2GP 69

7.7 Where Possible, Do Not Rely on Set Aliases 70

7.8 Advice About Writing MPSGE Files for Conversion to GEMPACK 70
7.8.1 $report: Section is Ignored by MGE2GP 71

7.9 Walras Law and the Numeraire 71
7.9.1 Always Check the Result for WALRASSLACK 72

7.10 The Equations and the TAB File 72

7.11 Technical Details about the TAB File Written 73
7.11.1 Editing TAB and Command File 73
7.11.2 Names of the Variables and Coefficients 74
7.11.3 Sets 74
7.11.4 Subsets 74
7.11.5 Sets over which Sector and Consumer Variables are Declared 75
7.11.6 The TAB File is a Mixed Levels/Linear File 75
7.11.7 Assertions 76

7.12 Restrictions on MGE Files 76
7.12.1 d: Fields in a $demand: Block 76
7.12.2 Restrictions on Names in MGE Files 76

v

7.13 MPSGE Features Net Yet Supported 77

7.14 Known Limitations on the Current Version of MGE2GP 77

7.15 Likely Future Changes to MGE2GP 78
7.15.1 MGE2GP Could Know the Contents of the HAR File 78
7.15.2 Possible New Rule for Reading Set Elements from the HAR File 78

8. FUTURE WORK 79

9. REFERENCES 80

9.1 GEMPACK Documentation 80

10. APPENDIX 1 – SYNTAX RULES FOR MPSGE FILES 81

10.1 New Restrictions 81

10.2 Basic Rules of Syntax 81

10.3 MPSGE Section Heading Keywords 81

10.4 Variable Declarations 82

10.5 Domain Restriction 82

10.6 Function Declarations 83
10.6.1 $PROD Block Syntax 83
10.6.2 A Simple $PROD Block 84
10.6.3 $PROD Block with Nested Functions 84
10.6.4 $PROD Block -- Joint Outputs 84
10.6.5 Taxes on Inputs in a $PROD Block 85
10.6.6 Taxes on Outputs in a $PROD Block 85
10.6.7 Representing Technical Change 86
10.6.8 $DEMAND Block Syntax 86
10.6.9 $CONSTRAINT Syntax 87

11. APPENDIX 2 – ALGEBRAIC FORM OF THE TWOBYTWO MODEL 88

12. APPENDIX 3 – CHANGES FROM EARLIER VERSIONS OF MGE2GP
89

12.1 Changes from Version 1 (June 2004) to Version 1.1 (July 2004) 89

1. Introduction

MPSGE2 is a non-algebraic language for the formulation of applied general equilibrium models. When
you build a model using MPSGE you do not need to specify equations, but you instead work with a
tabular representation of the model. The input tables make reference to source statistics, typically
drawn from a single benchmark year. MPSGE input data describing your model characterize
technology, preferences, tax rates, and factor endowments. These data, together with a set of
equilibrium conditions, define the equilibrium framework.

MPSGE is a framework designed primarily to permit rapid prototyping of applied models. The
compact, non-algebraic format can substantially improve productivity through the automated
generation of demand and supply functions. This approach reduces the scope for errors and simplifies
sensitivity analysis of results with respect to model structure. To take advantage of the MPSGE
framework, a user must learn the syntax and conventions of the MPSGE language.

The purpose of this paper is to introduce and document a new program (called MGE2GP3) that can be
used to convert MPSGE representations of models to GEMPACK. If you write down a model in
MPSGE form, and create a data file for the model, you can use this program to convert your model to
GEMPACK and then use GEMPACK software to solve the model. This paper contains detailed
instructions for carrying out these steps.

MPSGE was developed by Rutherford in the 1980s (Rutherford, 1985, 1987).4 Until now MPSGE has
been used only by GAMS modellers who use the MPSGE subsystem of GAMS (Brooke et al, 1988,
1998) to formulate the equations of their models and then solve their models using the MILES or
PATH algorithms (Rutherford, 1995, 1999). Now, with the development of MGE2GP, it is possible
also to solve MPSGE models using GEMPACK.

The paper contains a self-contained introduction to the MPSGE language, illustrated via several
example models. It also contains detailed hands-on instructions for solving these example models using
GEMPACK. The aim is to make the paper accessible to all general equilibrium modellers. In particular,
we do not assume that readers are already familiar with MPSGE or GEMPACK. Most of the example
models can be solved using the Demonstration Version of GEMPACK which can be downloaded (at no
cost) from the web – see section 1.2 for details.

The current version of MGE2GP is Version 1.1, July 2004. We expect to make available new versions
of this program regularly over the next year or so. Accordingly, when you want to start using the
program, you should check the relevant web sites (see section 1.1) to obtain the latest version of the
program and of the associated documentation.

The initial version of MGE2GP (Version 1, June 2004) was aimed at pedagogical models. The current
version can also handle at least one larger-scale model, namely the MINIMAL model – see section 6.

MPSGE has been in use for over a decade as GAMS subsystem – see Rutherford (1995, 1999). During
this time MPSGE has been used mainly by programmers who work at the command line and who use
text editors. The main disadvantage of the GAMS/MPSGE environment has been the absence of an
algebraic representation of the underlying model. The program MGE2GP translates MPSGE’s tabular
representation of an economic model into GEMPACK equations which can subsequently be examined
or edited. This approach offers a considerable improvement in transparency and flexibility vis-a-vis
GAMS/MPSGE.

• GEMPACK provides a Windows environment, so this allows MPSGE users to work in a Windows
environment to carry out and analyse simulations.

• When an MPSGE model has been translated to GEMPACK, the GEMPACK file provides a
complete and detailed representation of the underlying model structure. A knowledgeable user can

2 MPSGE stands for Mathematical Programming System for General Equilibrium modeling.
3 MGE because is begins from a model written down in MPSGE format and GP since it converts to
GEMPACK.
4 The early versions of MPSGE only allowed scalars. Versions of MPSGE allowing vectors and
matrices were introduced in 1989.

2

edit and modify the GEMPACK code produced from MPSGE model, thereby providing
considerable flexibility and opportunity for extending the modelling framework.

Now MPSGE models can be solved either using GAMS/MPSGE or using GEMPACK. We hope that
having a common starting point for models will encourage GAMS and GEMPACK users to better
understand each other’s work. That aspect of this project is a continuation of the "mending the family
tree" theme developed in Hertel et al (1992).

If you are a GAMS modeller who has never worked with GEMPACK you will find detailed
instructions in sections 4 and 5 for working with several models in GEMPACK. You will be interested
to learn about GEMPACK’s capability for producing executable image versions of individual models
(see section 5.4.2). If you convert your MPSGE model to GEMPACK, you can produce a version of
your model that can be freely distributed to model users. In addition, GEMPACK comes with a number
of helpful Windows programs for simulation analysis of policy issues. When GEMPACK models are
generated from an MPSGE model format, modellers can exploit the user-friendly features of the
GEMPACK environment while also exploiting the simplicity of MPSGE for defining model structure.

This paper is intended both for GEMPACK modellers who have not worked with MPSGE and for
GAMS/MPSGE modellers who have not previously worked with GEMPACK. Of course, the paper is
also intended for economists have used neither MPSGE nor GEMPACK. Depending on your
background, you may be able to skip or skim through certain sections of the paper.

Section 2 introduces the MPSGE language syntax from scratch. It is primarily intended for readers
(GEMPACK users) who have never used GAMS/MPSGE. In section 2 we describe several example
models which are used throughout this document (including in the hands-on parts in sections 4 and 5).
We have chosen these particular models in order to illustrate specific features of model representation
in MPSGE.

Section 3 describes the specific steps involved in converting existing MPSGE models into GEMPACK,
using the program MGE2GP. This section contains some details of the equations underlying an
MPSGE model and of how these equations are written in the TAB file produced by the conversion
program MGE2GP.

Sections 4 and 5 contain detailed hands-on instructions for solving the example MPSGE models we
supply using GEMPACK. The material in these two sections will be of particular interest to you if you
have worked with GAMS/MPSGE but have never used GEMPACK. Our hope is that modellers who
have never used GEMPACK before will find sufficient detail in these sections to be able to solve the
example models on their own computer. If you work through these sections, you will have received a
good introduction to GEMPACK.

Section 7 contains some advice about designing MPSGE models which are most suitable for
conversion to GEMPACK. Unlike the previous sections which we intend to be read in sequence, this
section is more of a reference section. It contains technical information which you may need to know if
you wish to build your own models by first creating an MPSGE representation and then using
MGE2GP to convert your models to GEMPACK in order to solve them. There are several language
features in MPSGE which are as yet not supported by the conversion program MGE2GP. These
restrictions are documented in section 7.13.

In section 8, we set out our plans for further work on this topic. References (including references to the
complete GEMPACK user documentation) are given in section 9.

Appendix 1 (section 10) contains syntax rules for the current version of the MPSGE modelling
language.

1.1 Downloading MGE2GP and Associated Models and Documentation

We expect to make available new versions of the program MGE2GP regularly over the next year or so.
These new versions will fix bugs and will extend the MPSGE syntax supported.

Accordingly, when you want to start using the program, you should check one of the following web
sites to obtain the latest version of the program and of the associated documentation.

http://www.monash.edu.au/policy/gpmge2gp.htm

http://www.cretegny.ch/mge2gp.htm

3

1.2 Release 8 or Later of GEMPACK is Required

In order to work with the TAB files produced by MGE2GP, you need Release 8 (October 2002) or later
of GEMPACK.5 And you may need to install a couple of bug fixes – see

http://www.monash.edu.au/policy/gpmge2gp.htm

1.3 Downloading the Demonstration Version of GEMPACK

You will need a version of GEMPACK to carry out the simulations described in sections 4 and 5.

If you do not have GEMPACK already, you can download the Demonstration Version of GEMPACK
for free from

http://www.monash.edu.au/policy/gpdemo.htm

• You should also download WinGEM (the Windows version of GEMPACK) and may wish to
download AnalyseGE and the GEMPACK documentation.

• Follow the instructions at http://www.monash.edu.au/policy/gpdemo.htm for downloading and
installing the various programs and files.

Of the various example models in section 2, all except for OPEN, BOP and TARIFF can be solved
using the Demonstration Version of GEMPACK.6

1.4 Changes from Earlier Versions of MGE2GP

You can ignore this section if you have not used earlier versions of MGE2GP.

We describe briefly in section 12 the changes from earlier versions of MGE2GP. If you are familiar
with one of these earlier versions you should read the relevant parts of that section since that will
probably be the most efficient way of finding out what you need to know in order to move to the
current version of MGE2GP.

1.5 Feedback on This Document

We want this document to provide good documentation for MPSGE, MGE2GP and the relevant parts
of GEMPACK.

We are committed to maintaining this document, and expect to modify and improve this document in
the light of experience with MGE2GP and feedback from users.

• If you find errors, or have difficulty understanding part of this document, please pass on your
comments to one of the authors.

• If you have suggestions for improvements, please pass them on to one of the authors.

• If you find problems with any of the files from the website, or if you have difficulties carrying out
the hands-on examples described in sections 4 to 6, or have problems reproducing the results set
out in those sections, please pass on the details to Ken Pearson.

• If you find bugs in MGE2GP, please report these – see section 3.3 for details.

Laurent Cretegny (laurent@cretegny.ch)
Mark Horridge (Mark.Horridge@buseco.monash.edu.au)

5 Some of the syntax used in the TAB files written by MGE2GP (for example, the "Linear_Var="
qualifier in Variable declarations) was not available in Release 7 of GEMPACK.
6 The TAB files for OPEN, BOP and TARIFF have more formulas than are allowed by the
Demonstration Version of GEMPACK.

4

Ken Pearson (Ken.Pearson@buseco.monash.edu.au)
Tom Rutherford (rutherford@colorado.edu)

5

2. Introduction to MPSGE via Several Example Models

MPSGE is intended primarily for producing general equilibrium models in which

• there are multiple interacting agents,

• individual behaviour is based on optimization,

• agent interactions are mediated by markets and prices,

• equilibrium occurs when endogenous variables (e.g., prices and activity levels) adjust such that
agents, subject to the constraints they face, cannot do better by altering their behaviour.

In an MPSGE model producers maximize profit subject to available technology, and consumers
maximize welfare subject to their budget constraint. Prices adjust so that markets for goods and factors
clear. In most cases this means that supply equals demand in each market.

In short, the MPSGE modelling format for Arrow-Debreu general economic equilibrium models is
based on competitive equilibria. There are three sets of “central variables” in an MPSGE model: prices
(for primary factors and produced goods), activity levels for constant-returns-to-scale production
sectors, and income levels for consumption agents.

An MPSGE approach to model building reduces both algebraic tedium and the scope for programming
errors. This simplification of certain steps in model development permits the modeller to pay more
attention to economic interpretation and to the testing of alternative formulations.

There is a long sequence of tasks involved in constructing a general equilibrium model. This process
begins with the collection of source data, typically an IO table, household survey and a set of trade
statistics. The work at the initial stages of a modelling project is largely focused on the interpretation,
reconciliation and balancing of the source data.

After these data have been assembled, the modeller needs to decide on the specification of model
variables and equations. The selected functional forms will have a number of parameters, and these
coefficients (for both preferences and technology) must be calibrated from the base year data.

The next step is to replicate the benchmark equilibrium. This verifies internal consistency of the model
equations and the derived coefficients.

Once the model is operational, the modeller then proceeds to define and solve a sequence of scenarios,
produce reports in the form of tables and figures, and interpret results.

MPSGE offers substantial reductions in the work required for the middle steps in this process.
GAMS/MPSGE automates the calibration of function parameters to a benchmark equilibrium while
simultaneously providing an automatic specification of the equations which define an equilibrium. The
novice modeller benefits from using MPSGE because it provides a clear framework for the underlying
model. The expert benefits from the sparse format in which the model is portrayed and the resulting
ease with which alternative models can be implemented and compared. These benefits are retained
when the MPSGE model is translated to GEMPACK.

The rest of this section is an introduction to MPSGE via a sequence of relatively simple examples.
Once you get some experience with general equilibrium models from the MPSGE perspective, you will
be able to make sense of the advantages of this language for theoretical and/or empirical analysis.

We encourage you to download the example models (see section 1.1) and to look at the MPSGE files
(they have suffix .MGE) as you read about the models in the subsections below.

2.1 An Introductory Example - TWOBYTWO.MGE

We begin with a familiar model of a two-by-two closed economy. This model, which is provided in the
file twobytwo.mge, is a workhorse of applied micro-economics and trade theory, representing an
economy with two goods (X and Y), two factors (K and L), and a single representative consumer. The
goods are produced through constant returns to scale production activities which combine primary
factor inputs. In the simplest case both factors are in fixed supply, so an equilibrium is characterized
by equality of factor endowments and factor demands, equality of commodity production and

6

commodity demand. These equilibrium conditions have corresponding variables representing the
commodity prices (px and py) and factor prices (w, the wage rate,�and r, the rental rate).

Competitive producer behaviour assures equalization of output prices and marginal cost in equilibrium,
two equations which correspond to producer output levels (x and y). Finally, an equilibrium involves
budget balance which relates the value of consumer expenditure to the value of factor endowments.

Almost all applied equilibrium models begin with accounting data describing purchases and sales in
one (or more) years. Technology and preferences in primitive form are only defined implicitly by these
statistics. Most applied models are based, in one way or another, on input-output statistics or social
accounts. The following social accounting matrix (SAM) is used for deriving coefficients of the
production and utility functions in the present example:

X Y C L K RA

X 100

Y 50

C 150

L 50 20

K 50 30

RA 70 80

These data are presented above in a square social accounting matrix (SAM). The accounts labelled X
and Y in this matrix refer to markets for final commodities. Account C corresponds to final
consumption, an activity which transforms goods X and Y into a composite consumption good C. The
RA account corresponds to the representative agent. This account defines both the endowments and
expenditures for the model’s single representative consumer.

The SAM provides a variety of benchmark value shares. For example, you can see that sector X
constitutes two-thirds of base year GDP, and the benchmark value shares of labour and capital in the
production of X are both one half. Sector Y constitutes one third of GDP, and the value shares of
labour and capital in the production of Y are 40% and 60%, respectively. All produced output enters
final demand, and the value of expenditure equals the value of factor earnings.

These data represent a balanced equilibrium dataset. The underlying balance of the base year accounts
implies internal consistency of the social accounts. Coefficients in the matrix are payments from the
column account (production sector, market or consumer) to the row account. When the row sum of an
account equals column sum of the same account, the account is in balance.7

The social accounts are essential inputs to a model formulation, but they do not by themselves
completely characterize a general equilibrium framework. A model formulation relies on a variety of
assumptions regarding preferences, technology and behaviour. For the present model, these structural
assumptions might be conveyed diagrammatically as follows:

7 Consider, for example, the X market. The row account indicates that 100 units of good X enter into
final consumption (column C). The X column has entries in the L and C accounts representing a
payment of 50 to both factors in the production sector for good X.

7

C

X Y

KY

Income from
primary

endowments

σY

LYKXLX

σX

σC

C

X Y

KY

Income from
primary

endowments

σY

LYKXLX

σX

σC

The model data in the SAM only convey local information about technology and preferences. When
we sketch the above diagram in which we indicate elasticities of substitution in the various sectors, we
have calibrated the model to the reference point. If you were to build a model based on this data using
an algebraic modelling language such as GEMPACK or GAMS, you would need to derive a number of
function coefficients based on equations derived from the associated demand functions. When you
build a model from this data using MPSGE, the source data itself enters directly into the MPSGE
tables. Here is the MPSGE model corresponding to the input data shown in these social accounts and
to the nesting diagram above:
$model:twobytwo

$sectors:
 x ! production index for sector X
 y ! production index for sector Y
 c ! consumption index

$commodities:
 px ! price index for commodity X
 py ! price index for commodity Y
 pc ! consumer price index
 pl ! price index for primary factor L
 pk ! price index for primary factor K

$consumers:
 ra ! income for representative agent RA

$prod:x s:1
 o:px q:100
 i:pl q:50
 i:pk q:50

$prod:y s:1
 o:py q:50
 i:pl q:20
 i:pk q:30

$prod:c s:1
 o:pc q:150
 i:px q:100
 i:py q:50

$demand:ra
 d:pc
 e:pl q:70
 e:pk q:80

The MPSGE file starts off with variable declarations. In the $commodities:, $sectors: and
$consumers: sections of the file, variable names are introduced and classified according as to how
they are to be interpreted in the model.

8

• Each $sector: in the model has an associated $prod: block in which the production inputs
and outputs are described. Each $prod: block indicates the inputs (the i: lines) and the
outputs (the o: lines) in the production process.

• Each $consumer: in the model has an associated $demand: block in which endowments
and preferences are described. The endowments are in the e: lines in these blocks. The income
of consumers comes from the value of the endowments and from taxes (which we introduce later,
in section 2.3). Normally endowments are exogenous (though they can be made endogenous as
you will see in section 2.4). The single d: line in each $demand: block indicates the
commodity which the consumer demands.

• The $commodities: appear in i: and o: fields at the start of lines in $prod: blocks and
they appear in e: and d: fields at the start of lines in $demand: blocks. These
$commodities: are really the market prices (that is, the non-user-specific prices) of the
commodities.

• All the necessary variables for solving the model are declared in the $sectors:,
$commodities: and $consumers: blocks. These are called central variables of the
model, and they correspond to activity levels, prices and income levels respectively.

Numerical values from the social account matrix can appear verbatim in the MGE file. The quantity
(q:) fields contain these values – when benchmark prices are normalized to unity, benchmark values
and quantities are identical.

These data in the model are organized by account as in the SAM. For example, the X account in the
social accounts is represented by the $prod:x block in the MGE file. The first record in this block
describes an output (o:) of 100 units from this sector to the market for X. The next two records
describes inputs (i:) of labour and capital. Every number from the social accounts appears in at least
one location in the MGE file. Some elements appear twice – for example, the output of X in the
$prod:x block appears as a input in the $prod:c block.

Preferences of a consumer in an MPSGE model are described by the single commodity that a consumer
demands. Each consumer demands exactly one commodity, and the composition of that commodity
describes the structure of consumer preference. In this example the $prod:c block in the MPSGE
model describes the structure of final demand, representing column C in the SAM. The output of the c
activity, commodity with price pc, is a composite good, the price of which represents the consumer
price index.

The benchmark data do not uniquely determine the model structure. Elasticities of substitution appear
in the s: fields in the first record of each $prod: block. For example, s:1 in the $prod:x line
indicates that the elasticity of substitution between the inputs of labor and capital is 1 in the production
of x.

For completeness, we show in Appendix 2 (section 11) the mathematical structure of this model.

2.1.1 Calibration of TWOBYTWO

An important step involved in setting up a numerical model is the calibration of function parameters to
benchmark data. This involves determining values of the parameters of production and utility
functions which are consistent with the actual data in the reference equilibrium. It is quite easy to see
how this works from a geometric perspective. Consider, for example, the production of good X in the
2x2 model. The combination of labour and capital to produce output is assumed to be cost-minimizing.
This implies tangency of the X=100 isoquant line with the isocost curve in the following diagram:

9

K

L500

50

X=100

PL/PK=1

K

L500

50

X=100

PL/PK=1

The isoquant in this diagram is the solid curve, representing combinations of K and L which can
produce 100 units of X output. The isocost line in this diagram is the straight line, representing
combinations of K and L which have the same value as the benchmark quantity. The calibration of
the function involves working out the equation of the isoquant from a knowledge of the benchmark
point. The equation of the isoquant depends on the data at the benchmark point and on the elasticity of
substitution (specified in the s:1 field in the $prod:x block).

The same calibration is performed for all three of the production functions appearing in the model.
Reference levels of inputs and outputs together with benchmark elasticities of substitution (the s: field
following the $prod: declaration) imply that the production functions for X, Y and C are given by:

fx(k, l) = 2 k1/2 l1/2 ,

fy(k,l) = 1.96 k3/5 l2/5

and

U(cx,cy) = 1.89 cx
2/3 cy

1/3.

2.1.2 Converting TWOBYTWO to GEMPACK

If you are keen to see how this TWOBYTWO model converts to GEMPACK and how to carry out
simulations with it using GEMPACK, you can jump ahead to section 4. If so, we suggest that you then
come back to section 2.2 below, where we introduce the MPSGE representation of some other models.

2.2 Three Simple Models

The TWOBYTWO model is non-typical in two respects. First all the benchmark data are shown
explicitly in the MGE file. Secondly, each commodity and sector is shown with its own account.

More typically,

• you can use set notation when convenient, as in cases where there are many goods, factors,
countries or consumers.

• the benchmark data can be shown in the MPSGE file using symbols for vectors and matrices. The
actual benchmark data can be read from external files (or can be specified somewhere else in the
program).

Combining these two features, data can be specified in arrays or tables, and read into the computation
program in a straightforward way. We are going to use this kind of notation from now on.

In this section we introduce three simple models to show you how to represent economic features in
MPSGE. The first example, sjmge.mge, brings in intermediate demands. We then move on a joint
production model, joint.mge. Finally, we give you an idea about how to represent international
trade flows in a small open economy, open.mge.

10

2.2.1 Intermediate Demand – SJMGE.MGE

Any real economies use intermediate goods in the production process. We use the Stylized Johansen8

model, sjmge.mge, to illustrate how to represent this feature in MPSGE. Consider first the SAM.

S1 S2 LAB CAP

sect fac
C RA

S1 4 2 2

S2 2 6 4

good comin hous

LAB 1 3

CAP 1 1

fac facin

C 6

RA 4 2

Xfac

You see immediately that the data may be grouped into different submatrices. These submatrices allow
us to write down the MPSGE production and demand blocks in a more compact way, using vector and
matrix notation. The full sjmge.mge file is shown below.

$model:sj

$sectors:
 xcom(sect) ! production
 w ! welfare

$commodities:
 pc(sect) ! price of commodity sect
 pf(fac) ! price of factor fac
 pw ! consumer price index

$consumers:
 y ! total nominal household expenditure

$prod:xcom(sect) s:1.0
 o:pc(sect) q:(sum(good, comin(good,sect)) + sum(fac, facin(fac,sect)))
 i:pc(good) q:comin(good,sect)
 i:pf(fac) q:facin(fac,sect)

$prod:w s:1.0
 o:pw q:(sum(good, hous(good)))
 i:pc(good) q:hous(good)

$demand:y
 d:pw
 e:pf(fac) q:endow(fac)

8 See chapter 3 of Dixon et al (1992) and chapter 3 of GPD-1.

11

Below we ask you to look in detail at selected parts of the file.

In this model, the production sector for output is as follows:
$prod:xcom(sect) s:1.0
 o:pc(sect) q:(sum(good, comin(good,sect)) + sum(fac, facin(fac,sect)))
 i:pc(good) q:comin(good,sect)
 i:pf(fac) q:facin(fac,sect)

Each sector sect produces a commodity pc(sect) using primary factors, pf(fac), and
intermediate goods, pc(good). You can see from the s: field that the technology used to combine
these production factors is based on a Cobb-Douglas production function, which is characterized by an
elasticity of substitution equal to one.

You can think of the vector notation as a shorthand for what could be spelled out by listing $prod:
blocks separately and then listing the inputs and outputs separately (as was done in
TWOBYTWO.MGE).

For example, assume that the set good has the two elements s1 and s2. Then the $prod:
block above is a shorthand for the following two $prod: blocks. The first is obtained by
replacing sect everywhere by "s1". The second by "s2".9

$prod:xcom("s1") s:1.0
 o:pc("s1") q:(sum(good, comin(good,"s1")) + sum(fac, facin(fac,"s1")))
 i:pc(good) q:comin(good,"s1")
 i:pf(fac) q:facin(fac,"s1")

$prod:xcom("s2") s:1.0
 o:pc("s2") q:(sum(good, comin(good,"s2")) + sum(fac, facin(fac,"s2")))
 i:pc(good) q:comin(good,"s1")
 i:pf(fac) q:facin(fac,"s1")

Suppose that the set fac contains the two elements labour and capital. Then the i: line
in the $prod:xcom("s1") block above is a shorthand for the two i: lines :
 i:pf("labour") q:facin("labour","s1")
 i:pf("capital") q:facin("capital","s1")

That is, there are two lots of factor inputs into the production of xcom("s1"), namely
facin("labour","s1") of labour and facin("capital","s1") of capital.

Suppose that the set good has the same 2 elements s1 and s2 as are in the set sect.
Then, first i: line in the $prod:xcom("s1") block above is a compact way of writing
what could be expressed via the following two i: lines :
 i:pc("s1") q:comin("s1","s1")
 i:pc("s2") q:comin("s2","s1")

There are two inputs of commodities into the production of xcom("s1"), namely
comin("s1","s1") of commodity pc("s1") and comin("s2","s1") of
commodity pc("s2").

In GAMS/MPSGE the symbols comin, qfacin above are called parameters. In GEMPACK they
are called Coefficients. In this paper we refer to them using either of these terms.

You can notice that the q: field on the o:pc(sect) line is an expression, which represents the
sum over all production factors used in each sector.

Regarding the final demand, the representative agent derives welfare w from consumption of the
commodities. As in the earlier TWOBYTWO example, this is represented in a $prod: block. In
vector syntax, the $prod: block for welfare is the following:
$prod:w s:1.0
 o:pw q:(sum(sect, hous(sect)))
 i:pc(sect) q:hous(sect)

9 Strictly speaking, you should not write these two $prod: blocks in an MGE file since each sector is
only allowed to be defined by a single $prod: block (see Appendix 1). Instead you would have to
define scalar sectors xcoms1 (in place of xcom("s1")) and xcoms2 (in place of xcom("s2"))
and write the blocks as $prod:xcoms1 and $prod:xcoms2.

12

For completeness, we show below the $demand: block in vector syntax for the representative agent.
The consumer is endowed with primary factors, pf(f), and demands the welfare composite of
purchased final goods, pw.
$demand:y
 d:pw
 e:pf(fac) q:endow(fac)

The benchmark data for this model are contained on a separate file (see section 5.1.1).

2.2.2 Joint Production and Nests – JOINT.MGE

We turn now to an economy whose industries produce several outputs. Building on the previous
explanation for intermediate demand, joint production is easily accommodated in MPSGE. Consider
the example joint.mge which is shown below.

$model:joint

$sectors:
 y(s) ! production
 u ! utility index

$commodities:
 pd(o) ! domestic price of commodity
 pf(f) ! price of primary factor
 pu ! price index for utility

$consumers:
 ra ! representative agent income

$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o)
 i:pd(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) va:

$prod:u s:esubc
 o:pu q:(sum(o, demand(o)))
 i:pd(o) q:demand(o)

$demand:ra
 d:pu
 e:pf(f) q:endow(f)

Look at the production sector for output y(s) in this model:
$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o)
 i:pd(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) va:

As in the sjmge.mge example, each industry s employs primary factors pf(f) and intermediate
goods pd(o) in the production process. However these industries produce multiple outputs and use
production factors in a different way, as we explain below.

As we explain below, the nesting diagram showing inputs and outputs for these sectors y(s) is as
follows.10

10 For example, Ls in the diagram corresponds to factor(“labor”,s) in the MGE
respresentation. Similarly ηS in the figure corresponds to etrn(s) in the MPSGE representation.

13

YS

GO,S VAS

KS

σS

LS

0

GS,O

ηS

YS

GO,S VAS

KS

σS

LS

0

GS,O

ηS

Multiple outputs

How can you see from the above $prod:y(s) block that each sector (or industry) s produces
several outputs? Look at the o:pd(o) line, which is the line that specifies the outputs of these sectors.
The key is that

the index o in the o:pd(o) line is different from the index s in the $prod:y(s) field.11

The second clue is that both indices s (the sector index) and o (the commodity index) appear in the
quantity field q:supply(s,o). The symbol supply(s,o) indicates the output of commodity o
by sector s.

In the data associated with this model, there are two sectors sagr (the agricultural sector)
and sind (the industrial sector). Each sector produces the two commodities pd("agr")
[the agricultural commodity] and pd("ind") [the industrial commodity]. The
supply(s,o) matrix is12

supply(s,o) o = agr o = ind

s = sagr 90 40

S = sind 40 90

You can see that sector sagr produces mainly the agr commodity (90 units) but also
some of the ind commodity (40 units).

The curvature of the production possibilities frontier, which is a CET (constant elasticity of
transformation) function, is given in the t:etrn(s) field on the $prod: line. Here etrn(s) is
the value of the elasticity of transformation between outputs in sector s. The s subscript here
indicates that there may be different values for this elasticity in the different sectors.

In the above $prod:y(s) block, there is no s: field. This means that the value of the substitution
elasticity between inputs is 0 (the MPSGE default value when the field is omitted).

Nesting

Another feature is introduced here, namely the nesting notation.

This is indicated by the field va:esub(s) in the $prod:y(s) line and
by the label va: in the i:pf(f) line.

11 If each sector s only produces a single output, the o: line would be o:pd(s). In that case,
sector s would only produce the single output, namely commodity pd(s).
12 To see this look at the header SPPL on the data file joint.har supplied. [You will need to use
the program ViewHAR to look at this file. Follow the procedure described in section 5.1.1.]

14

• If these va: references were omitted, it would be possible to substitute between all inputs. [The
inputs in the above $prod:y(s) block are inputs of commodities – see the i:pd(o) line –
and inputs of factors – see the i:pf(f) line.] The elasticity of substitution between these would
be zero (since there is no s: field on the $prod:y(s) line.

• But the purpose of the va: label in the i:pf(f) line is to indicate that inputs of factors pf(f)
– the inputs on this line – are to be first combined in their own nest to form a composite input
denoted by va.13 Then this composite commodity va can be substituted with the other inputs as
shown in the other i: line (namely the commodity inputs pd(o)).

So the va: references above indicate that there is a two-level nest here.

• In the bottom level nest, the inputs are the different factors pf(f) and elasticity of substitution
between them is esub(s) – see the va:esub(s) field on the $prod:y(s) line. [Note
that the elasticity of substitution esub(s) may be different for different industries.]

• In the top level nest, the inputs are va and the various commodities pd(o). Again the elasticity
of substitution between these inputs is zero (since there is no s: field on the $prod:y(s)
line).14

Here you cannot employ more labour or capital to decrease the quantity of intermediate goods used in
the production. Labour and capital are only a substitute for one another. The composite input va is
then combined with intermediate goods.

The bottom level nest is declared by the label va: (MPSGE allows this label to have up to 4
characters) on the $prod: line and on the i: line corresponding to primary factors.

2.2.3 Small Open Economy – OPEN.MGE

A natural extension to the models presented up until now is the representation of international trade
flows. We assume a small open economy where the rest of the world is not explicitly modelled.
Trading opportunities are summarized by simple production functions which allow the economy to
transform exports into a good which we will call “foreign exchange” (its price is denoted by pfx) and
which can then be used as input for producing imports.

First we show the whole of open.mge and then we discuss various parts of it.

$model:open

$sectors:
 y(s) ! production
 a(s) ! aggregate supply
 e(s) ! export index
 m(s) ! import index
 u ! utility index

$commodities:
 pd(s) ! domestic price of commodity
 pa(s) ! price of commodity
 pf(f) ! price of primary factor
 pe(s) ! price of export
 pm(s) ! price of import
 pu ! price index for utility
 pfx ! real exchange rate

$consumers:
 ra ! representative agent income

13 va stands for value added.
14 When the elasticity field is omitted, the MPSGE convention is that the value is taken to be zero.

15

$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(s) q:supply(s)
 o:pe(s) q:export(s)
 i:pa(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) va:

$prod:a(s) s:esubm(s)
 o:pa(s) q:(supply(s)+import(s))
 i:pd(s) q:supply(s)
 i:pm(s) q:import(s)

$prod:e(s)
 o:pfx q:export(s)
 i:pe(s) q:export(s)

$prod:m(s)
 o:pm(s) q:import(s)
 i:pfx q:import(s)

$prod:u s:esubc
 o:pu q:(sum(s, demand(s)))
 i:pa(s) q:demand(s)

$demand:ra
 d:pu
 e:pf(f) q:endow(f)
* bbop is the Benchmark Balance of Payments Surplus (X-M)
 e:pfx q:-bbop

Exports and Imports

In this model, we assume that both exports and imports are imperfect substitutes for domestic goods.

Exports export(o) are shown in the following CET function on the production side:
$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(s) q:supply(s)
 o:pe(s) q:export(s)
 i:pa(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) va:

Here etrn(s) is the elasticity of transformation. Industry activity y(s) can be imperfectly
transformed either into an exportable commodity pe(s) or into supplies pd(s) for domestic use.

Imports import(o) are shown in the following CES function on the consumption side:
$prod:a(o) s:esubm(o)
 o:pa(o) q:(supply(o)+import(o))
 i:pd(o) q:supply(o)
 i:pm(o) q:import(o)

This is the familiar Armington nest. For each o, imports pm(o) and domestic supplies pd(o) of
commodity o are combined to produce the composite commodity pa(o) which is used by domestic
firms and consumers. The elasticity of substitution (the Armington parameter) for commodity o is
given by esubm(o).

Foreign exchange pfx

The main new feature in open.mge is the introduction of the commodity pfx (foreign exchange).
This is introduced in order to keep track of, and fix, the balance of trade.

The blocks containing pfx are the following :
$prod:e(o)
 o:pfx q:export(o)
 i:pe(o) q:export(o)

$prod:m(o)
 o:pm(o) q:import(o)

16

 i:pfx q:import(o)

$demand:ra
 d:pu
 e:pf(f) q:endow(f)
* bbop is the Benchmark Balance of Payments Surplus (X-M)
 e:pfx q:-bbop

As with all other commodities, supply and demand for pfx must be equal. However the artificial
endowment –bbop accommodates the possibility that total exports may not equal total imports in the
benchmark equilibrium, as we explain below.

From the o:pfx line in the $prod:e(o) block, you can see that sum(o,export(o)) is part
of the supply.

From the i:pfx line in the $prod:m(o) block, you can see that sum(o,import(o)) is part
of the demand.

What about the e:pfx line in the $demand:ra block?

Normally an e: line indicates an endowment which means supply equal to the value in the
q: field. But a negative endowment (that is, a negative number in the q: field) is actually
counted as a (positive) demand (see section 3.2.4 for more details).

Suppose firstly that the benchmark value for bbop is negative. Then the value in q:-bbop
is positive, which counts as a supply of pfx equal to -bbop. Hence

total demand for pfx is equal to sum(o,import(o))

while

total supply of pfx is equal to sum(o,export(o)) + (-bbop).

For balance, we need

sum(o,import(o)) = sum(o,export(o)) – bbop

which means that

bbop = sum(o,export(o)) – sum(o,import(o)).

Suppose secondly that the benchmark value for bbop is positive. Then the value in
q:-bbop is negative. This counts as a positive demand for pfx. That is, bbop (not –
bbop) is added to the demand for pfx. Thus

total demand for pfx is equal to sum(o,import(o)) + bbop

while

total supply of pfx is equal to sum(o,export(o)).

For balance, we need

sum(o,import(o)) + bbop = sum(o,export(o))

which means, again, that

bbop = sum(o,export(o)) – sum(o,import(o)).

Hence, in both cases, we see that the benchmark value for bbop must be equal to the
familiar X-M, the benchmark balance of trade surplus.15

In the benchmark data in the Header Array file open.har supplied with open.mge,

total exports sum(o,export(o)) are equal to 60 and

15 You don’t really need to consider the two cases. From the e:pfx line, just count -bbop as a
supply (ignoring its sign). Then total supply is X-bbop (from the o:pfx and e:pfx lines) while
total demand is M (from the i:pfx line). Hence X-bbop=M and so bbop=X-M.

17

total imports sum(o,import(o)) are equal to 50.

Thus the benchmark balance of trade surplus is 10, which is the value of bbop in
open.har.

This explains the e:pfx line in the $demand:ra block. The representative agent ra is assumed
to be given an endowment equal to -bbop of this somewhat artificial commodity pfx. This is done
to keep the supply and demand for pfx equal in the benchmark (and throughout a simulation).

Why is there a negative sign in the q:-bbop field?

• Economically, a balance of trade surplus can be thought of as a gift to the rest of the
world. Hence it is subtracted from the income of consumer ra. This is the effect of the
q:-bbop field.

• Mathematically, the sign in the MGE file could be omitted without invalidating the
model. That is, we could have equally well put q:bbop as the q: field in that e:pfx
line. But then, instead of bbop being interpreted as the balance of trade surplus, it
would be interpreted as the balance of trade deficit (and the value –10 would need to be
put into the Header Array file open.har).

In summary, usually economies don’t have a zero trade balance in a given year but present a current
account surplus or deficit. This possible trade imbalance is modelled by endowing foreign exchange to
the representative agent equal to the imbalance.

2.2.4 Summary of MPSGE Features Introduced So Far

You have now learned about several important MPSGE features.

• Benchmark data can be shown by numbers in the q: fields (as in TWOBYTWO.MGE), or by
symbols representing vectors or matrices (as in SJMGE.MGE).

• When vector notation is used in $prod: blocks, there are really several different $prod:
blocks, one for each sector. [See the discussion of the $prod:y(s) block in SJMGE.MGE.]

• When vector notation is used in an i: line, this line indicates several different inputs (one for
each value of the index). Similarly for o: lines. [See SJMGE.MGE for the i: line case.]

• When there are two or more i: lines, these represent different inputs. Similarly for o: lines.
[See JOINT.MGE for the i: line case.]

• There are multiple outputs if an index in an o: line is different from the indexes in the $prod:
line. [See JOINT.MGE.]

• Nesting is indicated by extra fields in the $prod: line and by corresponding labels in certain i:
lines. [See the va nest in JOINT.MGE.]

• There can be negative endowments. [See q:-bbop in OPEN.MGE.]

• It is sometimes necessary to introduce somewhat artificial commodities to keep the accounting
framework straight. [See pfx in OPEN.MGE.]

2.3 Adding Exogenous Taxes

This section introduces exogenous taxes. The important lesson is to keep track of what prices firms and
consumers face. Until now, benchmark prices were supposed to be one but when you want to have pre-
existing taxes, then it may not be possible to calibrate a benchmark equilibrium with all prices equal to
one. You need to tell MPSGE what is the equilibrium price at the benchmark (if you do not specify its
reference value, MPSGE assumes the default value equal to one). The relative prices of inputs fix the
marginal rate of substitution and the relative prices of outputs fix the marginal rate of transformation.

18

2.3.1 Taxes on Inputs – TAXIN.MGE

In the benchmark SAM you have values received by firms and consumers, so that residual is
government revenue. For simplicity you can introduce a government agent collecting taxes. In the
present example, taxin.mge, the government agent also purchased goods, govdmd, which
represents government expenditures.

Taxes on inputs are specified on a net basis. This means that,

if a tax has ad valorem rate t then the user price is p(1+t) where p is the market price.

Note also that the price in the i: field is always the market price.

Input taxes in MPSGE are specified as follows.

• On an i: line, you indicate the recipient of the tax by the mean of an a: field and give then the
rate of the tax in a t: field.

• The tax agent is specified before the tax rate.

• Two or more taxes may be applied on a single i: line.

• A p: field is used to specify the reference price at the benchmark. If there is no p: field, the
MPSGE convention is to proceed as if p:1 were present.16

Consumers are treated symmetrically, and there is thus no restriction on the consumer to whom the tax
is paid. Typically, however, one consumer is associated with the government, gov, as is the case in the
taxin.mge example.

In taxin.mge, there is provision for taxes to be levied on commodity inputs pd(o) and factor
inputs pf(f) to sector $prod:y(s) as is shown below.
$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o)
 i:pd(o) q:interm(o,s) a:gov t:bti(o,s)
 i:pf(f) q:factor(f,s) p:bpf(f,s) a:gov t:btf(f,s) va:

• The user price in sector s for factor f is pf(f)*[1 + btf(f,s)]. The values bpf(f,s) in
the p: field must be equal to this. [If not, the program solving the model will stop with a fatal
error since the benchmark data are not internally consistent.]

• The user price in sector s for commodity pd(o) is pd(o)*[1 + bti(o,s)]. Since there
is no p: field in this line, the program proceeds as if p:1 were present. Hence the benchmark
values bti(o,s) must all be zero. That is, there are no taxes on commodity inputs in the
benchmark.

In this benchmark data supplied with this model, taxes are only levied on capital used in the industrial
sector sind.17 The tax rate on capital in this sector is equal to 100% which implies a reference price
for capital in the industrial sector equal to 2 when the consumer price is unity.

An important issue here is that the p: field depends on the benchmark value of the t: field if the
model has been calibrated. This means that subsequent changes in tax rates affecting the t: field do
not change the underlying technology characterized by the q: and p: field and its associated
elasticity.

We encourage you to look at the whole of the taxin.mge file (which you have downloaded as part
of the MGE2GP package – see section 1.1).

16 If there are two or more taxes on an i: line, the value in the p: field must take all taxes into
account.
17 You can see this by using ViewHAR to look at the data in the Header Array file taxin.har.
[Follow the method described in section 5.1.1.]

19

2.3.2 Taxes on Outputs – TAXOUT.MGE

Taxes on outputs are introduced in MPSGE in the same way as taxes on inputs apart from the
interpretation.

Taxes on outputs are specified on a gross basis. This means that,

if a tax has ad valorem rate t then the user price is p(1-t) where p is the market price.

Note also that the price in the o: field is always the market price.

You can see from the missing p: field on the o: line in the following $prod: block from
taxout.mge that there is no output tax in the benchmark equilibrium. However the a: field and
the t: fields are specified as in the case of an input tax.
$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o) a:gov t:bto(s,o)
 i:pd(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) p:bpf(f,s) a:gov t:btf(f,s) va:

Regarding the interpretation, the tax rate on inputs is specified on a net basis, while the tax rate on
outputs is specified on a gross basis. In other words, the user cost of an input with market price p
subject to an ad valorem tax at rate t is p(1+t), while the user cost of an output subject to an ad valorem
tax at rate t is p(1-t).

In order to help remember the difference between taxes on inputs and outputs, you can think of a
producer.

The producer’s costs increase with the introduction of an input tax,
whereas the value of the producer’s outputs decrease with an output tax.

The conventions for modelling taxes in MPSGE have an important implication. The application of an
ad valorem tax rate t on all the outputs in a $prod: block in place of an ad valorem tax rate t/(1-t) on
all the inputs in the same $prod: block has no effect on the equilibrium. In other words, an output
tax to defined on a gross basis is equivalent to an input tax ti defined on a net basis.

We encourage you to look at the whole of the taxout.mge file (which you have downloaded as part
of the MGE2GP package – see section 1.1).

2.3.3 Tariffs and Export Subsidies – TARIFF.MGE

Tariffs and export subsidies follow the same logic as taxes on inputs or outputs.

Our example tariff.mge was produced by adding import and export taxes to the model in
open.mge (see section 2.2.3).

Export subsidies are introduced in the export block while tariffs are introduced in the import block.
You can see from tariff.mge that these two blocks are now the following :
$prod:e(o)
 o:pfx q:export(o) p:bpe(o) a:gov t:bte(o)
 i:pe(o) q:(bpe(o)*export(o))
$prod:m(o)
 o:pm(o) q:(bpm(o)*import(o))
 i:pfx q:import(o) p:bpm(o) a:gov t:btm(o)

In open economy models, the modeller must chose units or prices. The convention we adopt in this
example is that units are chosen such that all domestic prices are equal to one initially. However the
tariffs increase the domestic price of imports and the export subsidies increase the domestic price of
exports. The domestic price of imports at the benchmark is then bpm=1+btm and the domestic price of
exports is bpe=1-bte for unity world prices. It implies that if domestic prices are equal to one at the
benchmark, the world price for imports must equal 1/(1+btm) and for exports 1/(1-bte). Therefore
import and export are interpreted as the value of the flows at world prices.

We encourage you to look at the whole of the tariff.mge file (which you have downloaded as part
of the MGE2GP package – see section 1.1).

20

2.3.4 Calibrating With Taxes

When there are taxes, you cannot assume (as we did implicitly in section 2.1.1) that prices are all one.

In the following figure, benchmark quantities are L0 = 20 (labor) and K0 = 40 (capital) and there is an ad
valorem tax of tK=100% on capital. So you can think of PL=1 (price of labor), PK=2 (user price of capital)
and VA=100 (value added) at the benchmark. The production function is calibrated using this price and
quantity information. Benchmark quantities determine the anchor point with L0 = 20 and K0 = 40.
Benchmark relative prices fix the slope of the isoquant line at that point and the elasticity describes the
curvature of the isocost curve.18

K

L200

40

VA=100

PL/PK=1/(1+tK)

K

L200

40

VA=100

PL/PK=1/(1+tK)

To summarize behaviour of consumers and producers is represented in MPSGE by the specification of:

• Benchmark quantities.

• Benchmark prices.

• Elasticity at the benchmark point.

2.4 Modifying Behaviour via Rationing

As described above, MPSGE provides a rather tight straight-jacket (which comes from the Arrow-
Debreu framework). The natural closure for your model has endowments and taxes exogenous. All
central variables of the model are solved for. In particular, prices of the commodities are determined by
the market clearing equations of the model. Usually the prices adjust so that all endowments are fully
used.

In this section we introduce ways you can break out of this straight-jacket using rationing. We first
consider a model where real wages are fixed, employ.mge, and then move to a model where
consumption is fixed, bop.mge.

2.4.1 Linking Wages to Consumer Prices – EMPLOY.MGE

In the models presented until now, we have a fixed supply of primary factors. Suppose for simplicity
that there is a single household that gets all the income from labour and capital. The MPSGE
representation for this representative agent ra is done through the $demand: block :
$demand:ra
 d:pu

18 Thought of in a formal way, benchmark quantities alone provide a zero order approximation (the
single anchor point) of the underlying technology. Benchmark reference prices and reference quantities
together provide a first order approximation (the isoquant line) and quantities, prices and elasticity
parameters together provide a second-order approximation (the isocost curve) of the underlying
technology.

21

 e:pf("lab") q:endl
 e:pf("cap") q:endc

where the prices pu, pf("lab") and pf("cap") are declared in the $commodities: block :
$commodities:
 pd(o) ! domestic price of commodity
 pf(f) ! price of primary factor
 pu ! price index for utility

The representative agent derives then his utility from the consumption of all o goods as you can see
from the following :
$prod:u s:esubc
 o:pu q:(sum(o, demand(o)))
 i:pd(o) q:demand(o)

where esubc is the elasticity of substitution between commodities pd(o).

In this model, the total endowment of labour and capital are exogenous. When you solve the model, the
prices pf("lab") and pf("cap") adjust to clear the markets for labour and capital. Demand for
labour equals the total endowment of labour. Suppose that endl_b and pf_b("lab") are equal to
the benchmark (that is, pre-simulation) quantity and price of labour respectively [in the discussion of
MPSGE models, we often add “_b” to the names to denote benchmark values]. Then the pre-
simulation value of labour is equal to pf_b("lab")*endl_b. Suppose that, in a simulation, the
supply of labour is exogenous and unchanged. Then the post-simulation quantity of labour will also be
endl_b while the post-simulation value of labour will be pf_s("lab")*endl_b [we add “_s” to
the names to denote post-simulation values].

Suppose now that you wish to link wages pf("lab") to the consumer price index pu. For
example, you may want to model a policy in which percentage changes in pf("lab") and
percentage changes in pu must be the same. [This policy, called wage indexation, was used in
Australia for many years as part of a centralised system of wage fixing.]

In order to model this policy, you need to add an equation that links pf("lab") and pu. Clearly
such an equation is inconsistent with the simple model we have described above, in which pu and
pf("lab") are determined to make their separate markets clear. So some other change must be
made in the model to accommodate this behaviour.

Suppose that, in some simulation with the simple model (without wage indexation), pu increases more
than pf("lab"). If pf("lab") were linked to pu, this says that pf("lab") should increase
above the level which clears the labour market. In that case, the labour market would not clear and the
demand for employment would be less than the supply of labour.

This suggests one way of modelling wage indexation. The key idea is that there may be less than full
employment.

In MPSGE, this can be done by introducing a rationing variable epl into the endowment for labour.
[This variable allows the model to break out of the normal MPSGE straight-jacket.] There are 3
changes in the model to make this change.

1. The e: line for pf("lab") in the $demand:ra block is changed to

 e:pf("lab") q:endl r:epl

2. The variable epl is added as an auxiliary variable via the statements

$auxiliary:
 epl ! employment index

3. A $constraint: relating to this auxiliary variable epl is added. [This constraint block
contains the equation which takes the model out of the straight-jacket.]

If your MGE file is to be used with GAMS or GEMPACK, this would be19

$constraint:epl
 pf("lab") =e= pu;

Alternatively, if your MGE file is to be used with GEMPACK, this could be

19 You can write levels or linear constraint equations – see section 7.6 for details.

22

$constraint:epl
 (linear) pf("lab") = pu;

Most importantly, the interpretation of variables changes.

• In the version without rationing, endl (the quantity in the q: field in the e:pf("lab")
line) represents the quantity of labor demanded and supplied.

• In the version employ.mge with rationing, the quantity of labor demanded (and supplied)
depends on the values of endl and of the rationing variable epl. By definition, the quantity of
labor demanded and supplied is equal to
 endl*epl

Thus, at the benchmark, the quantity of labour supplied (and demanded) QS_RA_PFLAB_B20 is equal
to epl_b*endl_b, while the value of labour supplied, VS_RA_PFLAB_B, is equal to
pf_b("lab") *epl_b*endl_b. In a simulation, endl is often exogenous and unchanged, while
pf("lab") and epl are usually endogenous (and changing). In that case, the post-simulation
quantity of labour supplied (and demanded) QS_RA_PFLAB_S is equal to epl_s*endl_b while the
value of labour supplied VS_RA_PFLAB_S is equal to pf_s("lab")*epl_s*endl_b. You can
see that the ratio QS_RA_PFLAB_S/QS_RA_PFLAB_B is equal to epl_s/epl_b.

Hence the variable epl has a natural interpretation, namely as an index of labour supply. [Suppose that
endl_b =100 and epl_b =1, and suppose also that epl_s=0.8. Then the pre-simulation and post-
simulation quantities of labour are 100 and 80 respectively. The ration epl_s/epl_b (equal to 0.8)
indicates that labour supply has fallen to 80% of its pre-simulation value due to the simulation shocks.]

The rationing field r:epl is in the e: line for pf("lab"). The value of epl affects the
demand and supply for labor and so this variable epl enters into both the revenue equation for ra
and the market clearing equation for pf("lab").

• The revenue equation for ra is modified so that agent ra only accrues revenue corresponding
to the actual amount of labour demanded. In the simple model (without wage indexation), the
revenue accruing to ra from labour will be equal to pf_b("lab")*endl_b in the initial
benchmark. [This is the price times the size of the endowment.] When rationing is present, the
revenue accruing to ra from labour will be epl_b*pf_b("lab")*endl_b in the initial
benchmark and will be epl_s*pf_s("lab")*endl_b (assuming that endl_b stays fixed)
post-simulation. This revenue depends not only on pf("lab") and endl but also on the
(endogenous) value of epl.

• The market clearing equation for labour says that demand equals supply for labour. In the simple
model (without wage indexation), the quantity of labour supplied is equal to endl_b at the
benchmark. When rationing is present, the benchmark quantity of labour supplied is equal to
epl_b*endl_b while the post-simulation quantity of labour supplied is equal to
epl_s*endl_s. Hence epl enters into the market clearing equation for labour.

In the simple model (without wage indexation) we often find it useful to think that plab is
determined by the market clearing equation for labour (and that the price pc of commodities is
determined by the market clearing equation for commodities).21

20 In this discussion (and elsewhere in the paper), we often use names for variables which are similar to
those used in the GEMPACK implementation of the models (as produced by the program MGE2GP).
[For example, this name QS_RA_PFLAB has RA and PFLAB to indicate that it occurs in the
i:pf("lab") line of the $demand:ra block. The QS at the start indicates Quantity Supplied.] And
we consistently add “_B” to denote benchmark values and “_S” to denote post-simulation values.
21 Many of the best expositors of model results find it useful to think of each equation as determining a
specific endogenous variable. They know that the equations of the model are a simultaneous system,
but they don’t let that dissuade them from giving a sequential explanation of the results, starting from
the shocks. We encourage you to do the same.

23

In the model with wage indexation, the constraint equation links pf("lab") and pu. It is still
useful to think of pu as being determined by the market clearing equation for commodities. But then
pf("lab") is determined by the constraint equation. So what does the market clearing equation for
labour determine? Well, you can think of it as determining the value of the rationing variable epl.
That is, the market clearing equation for labour determines the value of epl, which in turn determines
the quantity QS_RA_PFLAB of labour supplied (and demanded) since QS_RA_PFLAB=epl*endl
(and endl is usually exogenous and unchanged). Thus, in the model with wage indexation, it is
useful to think of the market clearing as determining the quantity of labour supplied.

That is the major difference between the two models. In the simple model, the market clearing equation
determines the price of labour. In the model with wage indexation, this equation determines the
quantity of labour, while pf("lab") is determined by the constraint equation.

Notes About This Model

You need to be careful in interpreting the value assigned to endl in the e: line
 e:pf("lab") q:endl r:epl

In the simple model without rationing, endl is equal to the quantity of labour. In the model with
rationing, the quantity of labour supplied and demanded is equal to epl*endl.

In a GEMPACK implementation of the simple model (without wage indexation), it would seem natural
to hold endl on the database and to read it. It represents the quantity of labour supplied and
demanded in the benchmark. In the model with wage indexation, you need to also hold the value of
epl on the database since it is a vital part of the benchmark solution implied by the database. Now
you have to be careful to look at both the values of endl and epl on the data base if you want to
know the quantity of labour at the benchmark, since this quantity is equal not to endl but to
epl*endl.

In the GEMPACK implementation of the model with wage indexation, we refer to endl as the
unrationed quantity of labour. This variable endl has no natural economic interpretation (unlike
epl*endl). The variable endl is included merely to keep the accounting correct in the model.

2.4.2 Allowing Trade Deficit or Surplus – BOP.MGE

The second example of rationing shows you how to let the balance of payments adjust to accommodate
changes in GDP. In our small-open economy model (see open.mge in section 2.2.3), the standard
closure is to consider that the representative agent may not increase or decrease his initial foreign
lending, which means that the trade surplus is fixed to its benchmark value. The real price of foreign
exchange adjusts then to clear the market.

Suppose now that you want to simulate the impact of an increase in aggregate consumption. Then, in
order to let aggregate output adjust to the shock, you need to free one of its components. In this small
model, GDP is composed of private consumption, government consumption and net exports. One way
of getting out of the MPSGE straight-jacket is to let the balance of payments adjust for movements in
GDP. In the example, bop.mge, this is implemented by the introduction of an auxiliary variable bop
which defines an index for the balance of payments, in this case, an index for the surplus.

$demand:ra
 d:pu
 e:pf(f) q:endow(f)
 e:pfx q:-bbop r:bop

The associated constraint is to fix aggregate consumption since this is the variable you need for the
experiment. Note that aggregate consumption is denoted by u since it is a measure for utility.

$constraint:bop
 (linear) u = 0;

The same discussion as in the first rationing example applies here except that bop_s may be smaller
than zero. In the benchmark, bop_b is equal to one reflecting the initial surplus equal to bbop. A
large increase in aggregate consumption then may cause trade balance to move toward deficit, meaning
that bop_s is smaller than zero.

24

2.5 Endogenous Taxes

As we say at the beginning of section 2.4, the natural closure in MPSGE has exogenous taxes.
However many empirical models do not fit into this structure. In particular when you consider some tax
reform experiments, you modify the level of each replacement tax in order to maintain an equal yield.
However, as a result of the endogenous response of prices and quantities, this will be true only at the
benchmark when tax rates are exogenous. In order to perform differential (equal yield) tax policy
analysis, it is therefore necessary to accommodate the endogenous determination of tax rates as part of
the equilibrium computation.

Within MPSGE endogenous taxes are introduced through auxiliary variables. There are two fields
associated with an endogenous tax.

• The n: field gives the name of the auxiliary variable which will allow the tax rate to adjust
endogenously.

• The m: field specifies an exogenous tax multiplier.

• The actual tax rate is equal to the product of the values in the m: and n: fields.

• The auxiliary variable specified in the n: field is associated with its $constraint: equation.
The equilibrium level of the auxiliary variable is selected to satisfy its associated equation even if
the variable does not appear in the equation.

If the m: field is omitted, the MPSGE convention is that the multiplier is taken to be equal to 1 (that
is, the default is m:1). If the value in the m: field is zero, there is no tax (since the m: field value is
multiplied by the n: field value to give the actual tax rate).

2.5.1 Endogenous Taxes Example – DIFFTAX.MGE

This example is based in the TAXOUT model – see section 2.3.2. In DIFFTAX, the tax on domestic
production (which is exogenous in TAXOUT) is made endogenous. The endogenous tax rate to (in
the n:to field) adjusts so that real government demand remains unchanged.

The relevant parts of DIFFTAX.MGE are the $prod:y(s) block which shows the tax and the
$constraint:to block which shows the equation used to keep real government demand fixed.
These are shown below.

$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o) a:gov n:to m:bto(s,o)
 i:pd(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) p:bpf(f,s) a:gov t:btf(f,s) va:

$constraint:to
* Hold real government consumption fixed
* In the levels, real govt consumption is GOV/PG=SUM(o,DEMAND(o))
 (linear) gov -pg = 0;

As you can se, we have chosen to write the constraint equation as a linearized equation, which is
indicated by the qualifier "(linear)". This equation requires that the percentage change gov in
government revenue remain equal to the percentage change pg in the price index for government
expenditures, which leaves the percentage change in real government consumption (gov-pg) equal
to zero.22

22 An alternative modelling assumption would be to keep government revenue (rather than real
demand) fixed. In that case, the $constraint:to block would be:
$constraint:to
* Hold real government income fixed
 (linear) gov = 0;
We chose not to do this since this equation is not homogeneous in prices, which means that the
homogeneity simulation we recommend with these models (see sections 4 and 5) does not give the
expected results.

25

In the database DIFFTAX.HAR which accompanies this model, the value of to is zero, which
means that there is no tax in the benchmark. The values of the multipliers bto(s,o) are all equal to
1. So, if to becomes nonzero in response to a shock, the same ad valorem tax rate will apply to all
outputs supply(s,o).

The simulation in DIFFTAX.CMF which accompanies this model, the benchmark ad valorem rate of
tax on capital in sector sind is 100%. In DIFFTAX.CMF, this tax is removed and replaced by an
endogenous tax on outputs of commodities, with to adjusting so that real government demand stays
unchanged. Extra revenue for gov must be generated to compensate for the revenue lost by the
removal of taxes on capital.

An alternative would be to keep government revenue fixed. In that case, the $constraint:to
block would be:
$constraint:to
* Hold real government income fixed
 (linear) gov = 0;
We chose not to do this since this equation is not homogeneous in prices, which means that the
homogeneity simulation we recommend with these models (see sections 4 and 5) does not give the
expected results.

2.6 Other Advanced MPSGE Features

2.6.1 Exception Handling

MPSGE is designed so that all and only those variables which are declared are actually employed in a
particular model. This form of “explicit declaration” helps to catch nuisance bugs in large dimensional
datasets. It means however that some care must be exercised when a database includes “missing
goods”. Considered, for example, a model in which s is the set of goods in the underlying database,
and p(s) is the associated vector of prices for these commodities. If a subset of the goods is missing
from the database (in the sense that there is zero production of commodities in this subset), then the
declaration of p(s) must be restricted to those goods which actually appear in the model.

The operator $ provides you a way of handling this kind of exceptions in declaration and definition
blocks. It also allows you to define a specific production structure for elements s in a subset t(s)
with respect to other elements in s but not in t(s).

The exception operator $ can be used on virtually any entry in the MPSGE input file. In particular,
conditional assignments may be applied to nest assignments for inputs and outputs. This permits
arbitrary assignments of elements from a single vector input to multiple nests.

2.6.2 Sets of Nests

As described in section 2.2.2, nest identifiers s: and t: are reserved for top level substitution and
transformation elasticities, respectively. If you specify a different name with no “parent” nest, as va:
in joint.mge for example, MPSGE supposes that this is an input subnest. In other words, va: is
automatically assumed to be va(s):. When you want to introduce an output subnest, you must
specify the output parent nest t, i.e. id_nest(t):.

Suppose now that you want to introduce a different subnest for each composite input or output in a
$prod: block. Then, instead of listing all commodities with a different subnest identifier, you may
wish to use the notation s.tl: for the subnest identifier. This will generate for you a set of nests, one
for each element of set s. The letters tl tells MPSGE to display the individual element text labels of
set s. Therefore, you don’t need to specify a different subnest identifier, MPSGE is going to use each
element label of set s as the subnest identifier for the composite commodity s.

The concept of parent nests is usually extended to more than two levels of nesting. This is illustrated by
the figure below. Suppose that you have a 3-level nest structure and you want a given composite
commodity in the third level to depend only on a specific composite commodity in the second level,

26

then you need to make explicit the parent nest of the third-level composite commodity. On the
$prod: line, the third-level nest identifier is therefore indicated by
id_nest(parent_id_nest):.

px

s:

e:

va: en:id:

pep(g)
g∉ {e,n}

pnpfl pfk

px

s:

e:

va: en:id:

pep(g)
g∉ {e,n}

pnpfl pfk

2.6.3 Spanning Operator

Dealing with non-separable functions is possible in MPSGE. The spanning operator # lets you to
introduce multiple inputs or outputs of a single commodity. For example, if you want a commodity p to
enter each nest s of a cost function, you need to specify it through the spanning operator in the
corresponding i: field, i:p#(s). This tells MPSGE to introduce one input coefficient for each
element of set s. When s is part of the function domain, then no argument is given to the spanning
operator, i.e. i:p#() in our example.

The spanning operator is usually combined with the sets of nests feature for representing margins.

2.7 Scope of MPSGE

Experienced MPSGE users know how to break out of the straight-jacket in many different ways. For
example, it is relatively straightforward to implement the following features in MPSGE:

• Technical change

• Margins

• Decreasing returns to scale

• Increasing returns to scale

• External economies of scale

Indeed, it is possible to implement even more complicated features like

• AIDS – Almost Ideal Demand Systems

• CRESH – Constant Ratio of Elasticity of Substitution Homothetic

though doing so may not be worth the trouble.

2.8 Documentation of MPSGE Syntax

You can find this in Appendix 1 (section 10).

27

3. Converting MPSGE Models to GEMPACK

Suppose that you have built a model by writing down an MPSGE file describing the model and
collecting data that represent a solution of your model. If you wish to solve that model using
GEMPACK, you proceed as follows.

In the text below, we suppose that the MPSGE file for your model is MODEL.MGE.

1. Organise any data which is not explicitly given in MODEL.MGE into a GEMPACK Header Array
file MODEL.HAR. Include headers giving the elements of the sets referred to in the MGE file.

2. Run the program MGE2GP to convert the MPSGE representation of your model to a GEMPACK
representation. For example, run MGE2GP to convert MODEL.MGE to a GEMPACK TAB file
MODEL.TAB, a GEMPACK Command file MODELHSIM.CMF and a GEMPACK Stored-input
file TMODEL.STI for running the GEMPACK program TABLO.

3. Use GEMPACK software to solve the model starting from MODEL.TAB, TMODEL.STI,
MODELHSIM.CMF and MODEL.HAR.

Steps 1 and 2 can be done in any order although, ideally, step 1 is done before step 2.

We describe step 2 in this section. We describe step 3 in detail in sections 4 and 5 below. There are
various ways of doing step 1, as we describe in section 7.4 below.

3.1 Converting an MGE File to GEMPACK TAB and Command Files

We provide a program MGE2GP that can be used to convert an MPSGE model to a form that can be
used to solve the model using GEMPACK. You can download this program from the web – see section
1.1.

In this section we describe how you can run this program and give some documentation about it.

3.1.1 Running MGE2GP to Convert to GEMPACK

You can run the program MGE2GP most easily from the command line. That is, go to a DOS-like box
and type in the relevant command.

Suppose, for example, that you have MODEL.MGE in directory C:\MODEL and that
program MGE2GP.EXE is in directory C:\MYPROGRAMS. Then, go to a DOS-like box,
change directory into C:\MODEL and type in the command

C:\myprograms\mge2gp model

This will produce files MODEL.TAB, TMODEL.STI and MODELHSIM.CMF in directory
C:\MODEL. The first of these is the GEMPACK TABLO Input file for the model, the second
is a Stored-input file for running the GEMPACK program TABLO and the third is a
GEMPACK Command file for carrying out a homogeneity simulation with the model.

When you install the MGE2GP package (program MGE2GP.EXE and example models – see
section 1.1), you will be advised to put the program MGE2GP.EXE into a directory which is
on your PATH. In that case, you just need to type

mge2gp model

(whatever directory you are in).

Note that the program MGE2GP requires the suffix of the file containing the MPSGE model to be
.MGE.

28

3.1.2 Nests

If your MGE file contains nests (see section 2.2.2), the program MGE2GP automatically rewrites your
MGE file by adding extra $prod: functions to remove the nests. The TAB, STI and Command files
produced are based on the rewritten MGE file.

Suppose, for example, that you have MODEL.MGE which contains nests. Then MGE2GP will produce
a new file MODEL_MGE2GP.MGE which is an alternative MGE representation of the same model, but
with extra $prod: blocks to remove the nests. Then MGE2GP produces MODEL.TAB,
TMODEL.STI and MODELHSIM.CMF which are based on the rewritten MODEL_MGE2GP.MGE.
However you can see the original $prod: functions in MODEL.MGE inside the comments in
MODEL.TAB.

Consider for example joint.mge shown below. You can see that the $prod:y(s) block
contains a nest because of the va:esub(s) on that line. [See section 2.2.2 for more details.]
$model:joint

$sectors:
 y(s) ! production
 u ! utility index

$commodities:
 pd(o) ! domestic price of commodity
 pf(f) ! price of primary factor
 pu ! price index for utility

$consumers:
 ra ! representative agent income

$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o)
 i:pd(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) va:

$prod:u s:esubc
 o:pu q:(sum(o, demand(o)))
 i:pd(o) q:demand(o)

$demand:ra
 d:pu
 e:pf(f) q:endow(f)

When MGE2GP runs on joint.mge, it first rewrites the file to produce JOINT_MGE2GP.MGE as
shown below. Note that the original $prod:y(s) block is broken into two $prod: blocks,
namely the modified $prod:y(s) block shown below and the additional $prod:d_va_y(s)
block. Notice also that the original nested $prod:y(s) block is shown as an MGE comment (lines
begin with *) after the first line of the new version of this block.
$model:joint

$sectors:
 y(s) ! production
 u ! utility index
 d_va_y(s) ! demand index for input nest va in sector y(s)

$commodities:
 pd(o) ! domestic price of commodity
 pf(f) ! price of primary factor
 pu ! price index for utility
 p_va_y(s) ! price index for input nest va in sector y(s)

$consumers:
 ra ! representative agent income

29

$prod:y(s) s:0 t:etrn(s)
* Original, nested function is:
* $prod:y(s) t:etrn(s) va:esub(s)
* o:pd(o) q:supply(s,o)
* i:pd(o) q:interm(o,s)
* i:pf(f) q:factor(f,s) va:
 o:pd(o) q:supply(s,o)
 i:pd(o) q:interm(o,s)
 i:p_va_y(s) q:(sum(f,factor(f,s)))

$prod:d_va_y(s) s:esub(s)
 o:p_va_y(s) q:(sum(f,factor(f,s)))
 i:pf(f) q:factor(f,s)

$prod:u s:esubc
 o:pu q:(sum(o, demand(o)))
 i:pd(o) q:demand(o)

$demand:ra
 d:pu
 e:pf(f) q:endow(f)

In the resulting file JOINT.TAB, the $prod:y(s) block (as rewritten in JOINT_MGE2GP.MGE
– see above) is shown as a strong comment before the TABLO statements implementing that block.

3.2 The Equations and the TAB File Written

One of the reasons for providing the program MGE2GP is to let developers of MPSGE models see the
equations underlying their model. In this section we describe the equations and give some details as to
how they look in the TAB file written by MGE2GP.

3.2.1 The Equations

The equations underlying an MPSGE model are in four groups.

• There are equations associated with a $demand: block.

• There are equations associated with a $prod: block.

• There is one market clearing equation which are associated with every $commodity.

• There are the $constraint: equations. We don't say anything more about these equations here
since they are visible in the MGE file.

3.2.2 Equations for a $demand: Block

We look at $demand: blocks first since the associated equations are simpler than for $prod: blocks.

The main equation associated with every $demand: block is the equation which adds up the total
income for the agent.

Example. Consider the $demand:ra block in TWOBYTWO.MGE. This block is
$demand:ra
 d:pc
 e:pl q:70
 e:pk q:80

The income for agent ra is the sum of the value of the labour supplied plus the value of the
capital rentals. In the notation used in the TAB file TWOBYTWO.TAB produced by
MGE2GP, this equation is :
 VI_RA = VS_RA_PL + VS_RA_PK ;

The variables are VI_RA (Value of Income for RA), VS_RA_PL (Value of Supply by RA of
commodity PL) and VS_RA_PK (ditto for PK).

30

There are also equations relating the price, quantity and value of these endowments. For
labour, this equation is :
 VS_RA_PL = PL_L * QS_RA_PL ;
The variables on the right-hand side are PL_L (market price of commodity PL in Levels value
– as distinct from the percentage change in the price, which is what the variable pl represents
in the TAB file), and QS_RA_PL (Quantity Supplied by RA of commodity PL).

3.2.3 Equations for a $prod: Block

The main equations associated with every $prod: block are :

♦ the CES demand and CET supply functions.

Example. Consider the $prod:x block in TWOBYTWO.MGE. This block is
$prod:x s:1
 o:px q:100
 i:pl q:50
 i:pk q:50

If you are a GAMS modeller, you would expect the CES demand function (in calibrated share
form) for labour in sector X to look something like :

Lx = L0x · (Px/P0x · P0l/Pl)
σ · X/X0

The linearized representation of this equation is :

lx = x - σ · (pl – px)

Here you can think of

• lx as representing the %-change in the demand for labour in this sector,

• x as representing the %-change in the total output of this sector,

• σ as being the elasticity of substitution between labour and capital (its value is 1.0 here
because of the s:1 in the first line of the $prod:x block),

• pl as representing the %-change in the price of labour, and

• px as representing the %-change in the price of the output x of this sector.

This equation says that

• if there is no relative price movement between pl and px (that is, if pl = px), then the %-
change in the demand for labour in sector x is equal to the %-change in the output of the
sector.

• if the price pl of labour increases by one percent more than the price px of commodity x,
and if there is no change in the output of this sector (that is, x = 0), then the %-change in
the demand for labour in this sector will fall by σ percent.

In the TAB file TWOBYTWO.TAB produced by MGE2GP, this equation is written as
 p_qd_x_pl = x - 1 * [pl - mc_x] ;

Here

• p_qd_x_pl represents the %-change (p_) in QD_X_PL (Quantity Demanded in sector
X of commodity PL),

• x represents the %-change in the output of sector x,

• you can see that σ is set equal to 1,

• pl represents the %-change in the price of labour, and

• mc_x represents the %-change in the Marginal Cost of commodity X.

♦ the zero profit condition which says that costs = revenue.

31

Example. Consider again the $prod:x block in TWOBYTWO.MGE. [This block is shown
above.]

The zero profit equation in the TAB file TWOBYTWO.TAB produced by MGE2GP is written
as the following linearized equation:
 mr_x = mc_x ;

The variables are mr_x (%-change in Marginal Revenue from sector X) and mc_x (%-
change in Marginal Costs in sector X).23

There are also

♦ the equations relating to any taxes.

Example. Consider the $prod:y(s) block in TAXOUT.MGE. This block is
$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o) a:gov t:bto(s,o)
 i:pd(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) p:bpf(f,s) a:gov t:btf(f,s) va:

Below we look at the equations relating to the tax bto on output (the o:pd line above).

• One equation calculates the value of the taxes on outputs. This equation is:
 TOVYPDGOV(s,o) = TORYPDGOV(s,o) * VS_Y_PD(s,o) ;
The variables are
 TOVYPDGOV (Tax on Output reVenue in sector Y on output PD going to agent GOV),
 TORYPDGOV (Tax on Output Rate in sector Y on output PD going to agent GOV),
 VS_Y_PD (Value of Supply in sector Y of commodity PD). [The market price (pd in
this case) in an o: line is always inclusive of taxes – this is an MPSGE convention – see
section 2.3.2.24]

• Another equation calculates the total revenue in this sector. This equation is :
 R_Y(s) = SUM{o, [VS_Y_PD(s,o) - TOVYPDGOV(s,o)]} ;
The variable on the left-hand side is R_Y (total Revenue in sector Y). The variables on
the right-hand side have been introduced just above. The TOVYPDGOV part goes to
agent GOV and only the rest of VS_Y_PD is revenue for sector Y.

If you are a GEMPACK expert you will be a little surprised by the syntax in the two equations
shown above. Here we are using a slightly schematic syntax (more like the GAMS syntax than
the GEMPACK syntax). Of course the TAB file does have these equations written in strict
GEMPACK syntax.

If you are a GAMS expert, you should note that the syntax used in the TAB file for the two
equations above is slightly different from the way they are written above. You can look at the
TAB file TAXOUT.TAB when you come to do a simulation with that model later, in section
5.3.

3.2.4 Supply, Demand and Market Clearing Equations

For every commodity declared in a $commodity: block, there is an associated market clearing
equation which says that the total quantity demanded is equal to the total quantity supplied.

Preceding the market clearing equation for any commodity are two Formula&Equations which
calculate the total quantity demanded and supplied respectively.

23 The actual equation in the TAB file is a little more complicated. See section 3.2.5 for a brief
explanation.
24 This is in contrast to the market price in an i: line. It is an MPSGE convention that the market
price does not include any taxes in that case (see section 2.3.1). [For example, in the second i: line in
the $prod:y(s) block, the market price pf(f) does not include the taxes going to consumer
gov.]

32

All commodities are supplied to the market either as an initial positive endowment or as a produced
good (or as both an initial positive endowment and a produced good). All commodities are taken from
the market either as an exogenous "negative endowment" or as a production input or as a good
demanded by households.

The total supply of a commodity p(i) is the sum of the following three terms:

• the sum of the quantities in all lines beginning o:p(i) in $prod: blocks.

• the sum of positive exogenous endowments which are found in $demand: blocks in
lines beginning e:p(i) which have no r: field.

• the sum of positive endogenous endowments which are found in $demand: blocks in
lines beginning e:p(i) which have an r: field. Here the supply is equal to the value
in the q: field times the value in the r: field (see section 2.4). [The r: field is what
makes this an endogenous endowment.]

The total demand for good p(i) is the sum of the following four terms:

• the sum of demands associated with i:p(i) records in $prod: blocks.

• the sum of final demands d:p(i) in $demand: blocks. For example, consider
$demand:state(r,i)
 d:p(i)
Here the associated demand for p(i) is SUM[r, state(r,i)/p(i)].

• the sum of negative exogenous endowments which are found in $demand: blocks in
lines beginning e:p(i) which have no r: field.

• the sum of negative endogenous endowments which are found in $demand: blocks in
lines beginning e:p(i) which have an r: field. Here the supply is equal to the value
in the q: field times the value in the r: field (see section 2.4). [The r: field is what
makes this an endogenous endowment.]

On the supply side there are two contributions to the market total: producer outputs and initial
(positive) endowments. On the demand side there are three contributions to the market total: producer
demands, negative "endowments" and final demands.

Example. Consider the market clearing equations for pc and pl in TWOBYTWO.TAB.

• 1. Total demand for pc. The commodity pc occurs in a d: line in the $demand:ra
block. Hence the total quantity demanded for pc is given by the equation (in the levels):
 TQD_PC = VI_RA / PC_L ;
Here TQD_PC stands for the Total Quantity Demanded of commodity PC, while VI_RA
stands for Value of Income of consumer RA and PC_L is the levels value of the price
of commodity PC.25

2. Total supply of pc. The commodity pc also occurs in the line
 o:pc q:150
in the $prod:c block. Hence the pre-simulation total supply of commodity pc is
equal to 150. In the TAB produced by MGE2GP, the equation for the total supply of
commodity pc is written as:
 TQS_PC = QS_C_PC ;
Here TQS_PC stands for the Total Quantity Supplied of commodity PC, while QS_C_PC
stands for Quantity Supplied in $prod:c corresponding to line o:pc. [QS_C_PC is
equal to 150 (the value in the q: field in this line) at the start of the simulation. This
value may change during the simulation.]
3. The market clearing equation for commodity pc simply says that (in the levels)
 TQD_PC = TQS_PC ;

25 An earlier equation in the TAB file calculates VI_RA (see section 3.2.2).

33

• 1. Total demand for pl. There are i:pl lines in the $prod:x and $prod:y blocks.
Hence the total quantity demanded for pl is given by the equation:
 TQD_PL = QD_X_PL + QD_Y_PL ;
Here TQD_PL stands for the Total Quantity Demanded of commodity PL, while
QS_X_PL and QS_Y_PL stand for Quantity Supplied in $prod:x or $prod:y
respectively relating to the relevant i:pl line. [These quantities are 50 and 20
respectively in the initial database.]
2. Total supply for pl. The only relevant line is the e:pl line in the $demand:ra
block. Hence the total quantity supplied for pl is given by the equation
 TQS_PL = QS_RA_PL ;
[In the pre-simulation database, QS_RA_PL is equal to the value 70 in the q: field in
the e:pl line in the $demand:ra block. Hence total supply equals total demand in
the database.]
3. The market clearing equation for commodity pl simply says that
 TQD_PL = TQS_PL ;26

3.2.5 The Equations in the TAB File

As you probably know, TAB files in GEMPACK can contain a mixture of levels and linearized
equations.

Most of the equations in the TAB file are as discussed above (with the addition of syntax required by
GEMPACK) – that is, are levels equations.

As you saw above in section 3.2.3 above, the CES demand and CET supply functions are written as
linearized equations in the TAB file.

Some of the equations in the TAB file have extra conditions and extra terms attached. These are usually
ways of handling modelling and numerical issues which arise if some quantity is zero.27

3.2.6 Grouping of Equations in the TAB File

Open the TAB file TWOBYTWO.TAB produced by running MGE2GP to convert TWOBYTWO.MGE.
Indeed, we recommend that you open this file in the GEMPACK windows program TABmate (which
you can do by double-clicking on the TABmate icon which should be on your desktop if you have
GEMPACK installed on your PC). We recommend TABmate since that highlights the different parts of
the GEMPACK syntax. You should see the following.

An initial section defining Coefficients BALTOLI and BALTOLC. You should ignore this for the
present.

Then come statements declaring the variables in the $sectors:, $commodities:,
$consumers: and $auxiliary: parts of the MGE file.

26 If you look in TWOBYTWO.TAB as produced by MGE2GP, you will see some extra terms in these
equations. For example, the equation for TQD_PL has the extra term
 IF[QS_RA_PL LT 0, -QS_RA_PL]
However you can tell (even if MGE2GP cannot) that this is irrelevant. [This term corresponds to the
"negative" endowment case in the general rule for calculating total demand.]
27 For example, the zero profit condition for $prod:c says that marginal revenue is equal to
marginal costs in this production. So you would expect the (linearized) equation to read
 mr_c = mc_c ;
[Here mr_c and mc_c are the percentage changes in the marginal revenue and costs respectively in
$prod:c.] But the equation in the TAB file says
 IF[R_C NE 0, mr_c – mc_c] + IF[NOT[R_C NE 0], c] = 0 ;
The usual equation applies provided R_C (the total revenue in $prod:c) is nonzero. Otherwise the
equation c=0 holds. Clearly in this model, R_C will never be zero. But in larger models and in
production sectors over a vector of sectors, the revenue in one sector may be zero.

34

Then come the equations and other statements for each of the $prod: and $demand: blocks in the
MGE file.

For example, you can recognise the part of the code relating to the $prod:x block since the
exact $prod:x block from the MGE file is shown as a comment in the TAB file.28 In
TWOBYTWO.TAB, first you will see the equations and other statements for the $prod:x
block. You should be able to recognise several of the equations from the discussion above. For
example, the CES demand function for labour in $prod:x is written as

Equation (Linear) E_p_qd_x_pl p_qd_x_pl = x - 1 * [pl - mc_x] ;

while the connection between the value VD_X_PL and the associated price PL_L and
quantity QD_X_PL is written as

Formula & Equation E_p_vd_x_pl VD_X_PL = PL_L * QD_X_PL ;

Then you can see the statements implementing the other $prod: and $demand: blocks.

The code for a $prod: block often indicates (via a comment) the line (i: or o: line) from which
the code comes.

Finally you will see the section for the market clearing equations. Again you can recognise these from
the discussion above and from the comments in the TAB file.

For example, the market clearing equation for commodity pl is written as
! Market clearing for pl !
Equation (Levels) E_pl
 # Market clearing equation for commodity pl #
 TQD_PL = TQS_PL ;

Notice also that the market clearing equation for commodity px has been omitted to satisfy Walras
law. The variable WALRASSLACK is introduced as a check of market clearing in this sector. The
simulation result for walrasslack should always be zero (or very close to zero). See section 7.9 for
more details about this.

The equations and other statements in TWOBYTWO.TAB are especially easy to read (even if you are
not used to GEMPACK) since all variables are scalars. When there are sets and vector and matrix
variables, the equations are similar, but have arguments to indicate the vector and matrix nature of the
equations. You can see examples of that in section 7.10 below.

3.2.7 Tax Variables in the TAB File

The tax variables in the TAB file have the same arguments as the symbol in the t: field (or the n:
field) to which they correspond.29

For example, in TAXIN.MGE you see

$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(o) q:supply(s,o)
 i:pd(o) q:interm(o,s) p:bpi(s) a:gov t:bti(s)
 i:pf(f) q:factor(f,s) p:bpf(f,s) a:gov t:btf(f,s) va:

Corresponding to the t:bti(s) field in the above i:pd(o) line you will see

28 In TAB files, ordinary comments start with an exclamation mark ! and end with an exclamation
mark. For example, see the comment
! $prod:x !
at the start of this part of the TAB file. TAB files can also contain so-called strong-comments which are
sections of text which begin with ![[! and end with !]]!. You can see the whole of the $prod:x
block is reproduced as a strong comment. Note that this text is highlighted with a blue background in
TABmate.
29 This represents a change from Version 1 (June 2004) of MGE2GP where the tax variables in the
TAB file always had "full rank".

35

Variable(Levels, Change, Linear_Name=c_bti)
 (All,s_1,s) BTI(s_1)
 # Pre-sim value of tax rate on pd(o) for "a:gov t:bti(s)" in $prod:y(s) # ;

in the TAB file TAXIN.TAB.

Corresponding to the t:btf(f,s) field in the above i:pf(f) line you will see

Variable(Levels, Change, Linear_Name=c_btf)
 (All,f_1,f)(All,s_1,s) BTF(f_1,s_1)
 # Pre-sim tax rate on pf(f) for "a:gov t:btf(f,s)" in $prod:d_va_y(s) # ;

in the TAB file TAXIN.TAB.

Note that the arguments (indexes) for variables BTI and BTF in the TAB file are the same as for
those in the corresponding t: field in the MGE file.

3.3 The MGE2GP Code

The code for the program MGE2GP is written by Tom Rutherford and Ken Pearson. Tom and Ken
could not have done this without Laurent Cretegny’s knowledge of both GAMS/MPSGE and
GEMPACK. For example, Laurent worked out the examples in section 2 and kept checking that we
obtained the same results when these models were solved via GEMPACK or GAMS/MPSGE.

The code, which is written in Fortran 90, is in three parts.

• The MGE file is read and checked. Its contents are stored in suitable data structures.

• If there are nests, the original MGE file is rewritten to remove the nests – see section 3.1.2.

• The GEMPACK outputs (TAB, Command and TABLO STI files) are written.

Tom is responsible for the first two parts above while Ken is responsible for the third part.

If you find bugs, or if you have suggestions for improvements in the code, please pass them on to Tom
(rutherford@colorado.edu)or Ken (Ken.Pearson@buseco.monash.edu.au).

If you are reporting a bug, please zip up into a single zip file your MGE file and HAR file. Also any
output files which show the bug. Send the zip to Ken or Tom.

36

4. Simulations with the TWOBYTWO Model Using GEMPACK

In this section we show you how you can carry out simulations with the example models provided in the
MGE2GP package (see section 1.1).

You will need a version of GEMPACK (Release 8 or later – see section 1.2) to carry out the simulations. If
you do not already have GEMPACK, you can use the Demonstration Version of GEMPACK for solving
the TWOBYTWO model and many of the models in section 5. You can download the Demonstration
Version of GEMPACK from the web – see section 1.2.

In this section you will work with the TWOBYTWO example model. We take you through the different
steps in great detail.

In section 5 below, you will carry out simulations with the other example MPSGE models supplied.

If you are an experienced GEMPACK user, we encourage you to glance quickly at the material in this
section and in section 5 below. In particular, you may be slightly surprised by the material in section 5.2.1.

Below we show you how to carry out simulations with the first example model, namely twobytwo.mge.
We assume that you have this file in the subdirectory c:\mge2gp.

4.1 Installing Program MGE2GP

You download the program MGE2GP from the web, as explained in section 1.1. The program MGE2GP is
the file MGE2GP.EXE.

We recommend that you put this program in a directory which is on your DOS Path. For example, put it in
the directory (usually c:\gp) in which your GEMPACK programs are installed.

The reason for putting MGE2GP.EXE into a directory which is on your Path is that you can then run the
program from the Command line just by typing in its name. You don't need to specify the full path name of
the EXE file.

4.2 Working at the Command Line

One way to solve the model is to work at the Command line (that is, to work in a DOS-like window). If
you prefer to work in a Windows manner, please skip this section and go on to section 4.3.

If you decide to work at the Command line, you need to make sure that the directory in which your
GEMPACK software is installed is on the PATH. Below we assume this.30

Go to your Command prompt environment. [If you are running Windows NT, 2000 or XP, you can get
there by running cmd.exe. If you are running Windows 98 or ME, you can go to a DOS prompt.]

4.2.1 Run MGE2GP to Convert the MGE File to GEMPACK

Change directory into the directory (c:\mge2gp – see above) in which you have MGE file
twobytwo.mge. You can do this via the commands

c:
cd \mge2gp

First convert the MGE file twobytwo.mge to GEMPACK TAB, STI and Command files by
running MGE2GP. You can do this by entering the command31

30 This directory is usually put on the PATH as part of the installation of GEMPACK. If you need to do
this manually, see section 3.9 of GPD-6 for details.
31 This assume that you have installed the program MGE2GP in a directory which is on your Path (as
described in section 4.1).

37

mge2gp twobytwo

This should create the three files twobytwo.tab, ttwobytwo.sti and
twobytwohsim.cmf.

4.2.2 Run TABLO – Processes the TAB File

Then run the GEMPACK program TABLO by typing in the command

tablo -sti ttwobytwo.sti

[Yes, there are two "t"s at the start of this .STI file name.]

This will run the GEMPACK program TABLO taking inputs from the so-called Stored-input file
TTWOBYTWO.STI. This instructs TABLO to process the TAB file TWOBYTWO.TAB and to produce
output for GEMSIM.32

The main outputs are the so-called GEMSIM Auxiliary files TWOBYTWO.GSS and
TWOBYTWO.GST. These are computer versions of all the statements in TWOBYTWO.TAB.

4.2.3 Run GEMSIM to Solve the Model

Then run the GEMPACK program GEMSIM by typing in the command

gemsim -cmf twobytwohsim.cmf

This will carry out the simulation specified in the Command file twobytwohsim.cmf. [You will
look at this file in section 4.5 below. For the minute, please assume it makes sense and proceed as
below to run the simulation.]

The program GEMSIM will produce a Solution file twobytwohsim.sl4. This contains the
simulation results.

If you are interested in seeing how the simulation can be carried out using GEMPACK’s windows
interfaces, you will see this in section 4.3 below, which you should skip ahead to now.

Otherwise you need to run the GEMPACK Windows program ViewSOL which you can do by
clicking on its icon (which should be on your desktop).33 When ViewSOL begins to run, go to the File
menu and click on Open . Navigate to the directory c:\mge2gp and open the Solution file
TWOBYTWOHSIM.SL4 just created. This contains the results of the simulation. You can now jump to
section 4.4 below where we guide you through the results.

4.3 Using a Windows Version of GEMPACK

This assumes that you have access to a Windows version of GEMPACK. Either the Demonstration
Version, an Executable-Image Version or a Source-Code Version is suitable.

Start the GEMPACK Windows interface WinGEM running by double clicking on its icon (which
should be on your desktop). This should give the main WinGEM menu, as shown below, across the top
of the screen. [You may need to look closely to see this since WinGEM is rather self-effacing and only
occupies a small part of the top of you screen - the rest of the screen is as it was before you double-
clicked on WinGEM.]

32 It also instructs TABLO to always use change differentiation (see section 2.2.6 of GPD-2) when
linearizing levels equations. This is why we ask you to use a Stored-input file rather than running
TABLO interactively.
33 There is no point in trying to look at the Solution file TWOBYTWOHSIM.SL4 directly in a text
editor because it is a binary file, not a text file. ViewSOL will open the Solution file and display the
simulation results on the screen.

38

WinGEM - GEMPACK for Windows
File Simulation HAFiles OtherTasks Programs Options Window Help

4.3.1 Set the Working Directory

WinGEM uses the idea of a working directory to simplify choosing files and running programs.
This working directory is where all the files for the model you are using are stored.

For the TWOBYTWO model examples here, the working directory needs to be the directory
c:\mge2gp in which you have the file twobytwo.mge. To set this, first click on File in the
main WinGEM menu. This will produce a drop-down menu. In the drop-down menu, click on the
menu item

Change both default directories...

The notation we use for the sequence of clicks (first File then Change both default directories) is

File | Change both default directories...

In the file selection box that appears, choose drive C: (or the drive containing your directory
\mge2gp if it is on a different drive). Then double-click on C:\ (this will be at the top of the list
of directories shown) and then double-click on the subdirectory MGE2GP. [Make sure that the
directory name shown in blue above the selection box changes to C:\MGE2GP (or D:\MGE2GP
etc if your \MGE2GP directory is on another drive).] Then click on the Ok button.

4.3.2 Run MGE2GP to Convert the MGE File to GEMPACK

You need to go to a DOS-like box to do this. To get a DOS-like box, select menu item File | Shell to
DOS in Working Directory from WinGEM’s File menu.

Then type in the command34

mge2gp twobytwo

The program MGE2GP.EXE should convert the MGE file twobytwo.mge to a GEMPACK TAB
file, a Stored-input file for TABLO and a Command file for carrying out a homogeneity simulation.
That is, this should create the three files twobytwo.tab, ttwobytwo.sti and
twobytwohsim.cmf.

You will not need this DOS-like box, so you can close it by typing

exit

There are three steps involved in carrying out a simulation using GEMPACK.

Step 1 – Implement the model by running the GEMPACK program TABLO

Step 2 – Solve the equations of the model (run the GEMPACK program GEMSIM)

Step 3 – View the results

WinGEM will guide you through these steps and indicate what to do next. [You will do step 1 in
section 4.3.3, step 2 in section 4.3.4 and step 3 in section 4.4.]

4.3.3 Run TABLO – Processes the TAB File

The TABLO Input file is called TWOBYTWO.TAB. It contains the equations of the TWOBYTWO
model. Choose

34 This assume that you have installed the program MGE2GP in a directory which is on your Path (as
described in section 4.1).

39

Simulation | TABLO Implement...

A window for TABLO will appear.

In the menu for the TABLO window, select Options menu item. Then in this menu choose

Run from STI file

You will see that the text to the left of the Select button on the TABLO window now says
"Stored Input file".

Now click on the Select button and choose the Stored-input file called TTWOBYTWO.STI.
[Yes, there really are two "t"s at the start of this name.]

Now click on the Run button.

The program runs TABLO in a DOS box and when complete, returns you to the TABLO window.
The program TABLO takes its inputs from the so-called Stored-input file TTWOBYTWO.STI.
This instructs TABLO to process the TAB file TWOBYTWO.TAB and to produce output for
GEMSIM.35

When TABLO has finished, you will be put back to the TABLO window. There should be no
error and you should see a button Go to GEMSIM. Click on this button to proceed to the next
step in running a simulation: Step 2 – Solve the equations of the model.

4.3.4 Run GEMSIM to Solve the Model

The button takes you to the window for running the GEMPACK program GEMSIM.

First Select the Command file called TWOBYTWOHSIM.CMF. [You will look at this file in
section 4.5 below. For the minute, please assume it makes sense and proceed as below to run the
simulation.]

Click on Run to run GEMSIM with the Command file TWOBYTWOHSIM.CMF. When the
simulation finishes (there should be no error), you see a window showing the accuracy of the
simulation. There should be a smiling face for the Variables accuracy. [If the Data accuracy is
frowning, you can ignore that since no data is read in this simulation – all the data is in the MGE
file and hence in the TAB file for this simple model.] Click Ok.

Then you should see a button Go to ViewSOL on the GEMSIM window. Click on this button to
look at the results, which you will do in section 4.4 below.36

4.4 Looking at the Results using ViewSOL

In this section we show you how to look at the results of your TWOBYTWOHSIM.CMF simulation.
Whether you have come here from section 4.2.3 or from section 4.3.4 above, you should have the
simulation results open in ViewSOL.

You will see the Contents page. This shows just one line Macros (since all variables are scalar
variables for this model).37

To see the results for all variables, just click on the Macros row on the Contents list. You should
see several rows. Each row has the name of a variable and four columns of numbers.38

35 It also instructs TABLO to always use change differentiation (see section 2.2.6 of GPD-2) when
linearizing levels equations. This is why we ask you to use a Stored-input file rather than running
TABLO interactively.
36 There is no point in trying to look at the Solution file TWOBYTWOHSIM.SL4 directly in a text editor
because it is a binary file, not a text file. ViewSOL will open the Solution file and display the simulation
results on the screen.
37 Macro in ViewSOL just means scalar variable.

40

This simulation is one in which the price of the numeraire (which is px, the price of commodity x)
is increased by one percent and all other exogenous variables are left unchanged. This is a so-
called price homogeneity simulation. You would expect that all prices and dollar values should
increased by one percent and that all quantities should remain unchanged. Below you will look at
the simulation results to check this.

For example, you should see the following rows.39

twobytwohsim Pre two.. Post two.. Chng two..
c_vs_ra_pk 0.800 80.000 80.800 0.800
p_qd_y_pk 0.000 30.000 30.000 0.000
p_vd_y_pk 0.000 30.000 30.300 0.300
pl 1.000 1.000 1.010 0.010
px 1.000 1.000 1.010 0.010

The second last row above (the pl row) means that

• the price of labour has increased by 1.000 percent. [This is the simulation result for variable
pl and it is in the column headed twobytwohsim.]

• the pre-simulation levels value for the price of labour is 1.000. [This is in the column header
Pre twobytwohsim.]

• the post-simulation levels value for the price of labour is 1.010. [This is in the column header
Post twobytwohsim.]

• the change in the levels value for the price of labour is 0.010. [This is in the column header
Chng twobytwohsim.]

This is all consistent with what you expect for a price homogeneity simulation.

The last row above (the px row) is much the same as this, expect that this row is shown in red.
That is because the variable px is exogenous in this simulation (see section 4.5 below). ViewSOL
shows exogenous variables in red (the other exogenous ones in this simulation are c_qs_ra_pl and
c_qs_ra_pk which are the changes in the supplies (or endowments) of labour and capital
respectively).

The third row above (the p_vd_y_pk row) shows the results for this variable which represents the
percentage change in the Value Demanded in sector Y of commodity PK (capital). The numbers
in this row mean that

• this value has increased by 1.000 percent.

• the pre-simulation value is 30.000. [This is the entry in the q: field in the i:pk row in the
$prod:y block in TWOBYTWO.MGE. Market prices (including pk) are assumed to be one
in the benchmark.]

• the post-simulation value is 30.300. [This is in the column header Post twobytwohsim.]

• the change in the levels value is 0.300. [This is in the column header Chng twobytwohsim.]

The second row above (the p_qd_y_pk row) shows the results for this variable which represents
the percentage change in the Quantity Demanded in sector Y of commodity PK (capital). The
numbers in this row mean that this quantity has not changed from the pre-simulation quantity of
30.

38 If you do not see four columns of numbers in each row, this is because of the Options setting in
ViewSOL. Select File | Options from ViewSOL’s main menu. Click to check the line Show levels
results (if present). Then click OK to close the options window. Then close ViewSOL and reopen
the Solution file (in the same way as you opened it before). This time there should be four numbers in
each row.
39 You can change the number of decimal places shown via the drop-down box near the middle of the
top row of your screen. Find the drop-down box which shows a figure (anywhere in the range 0 to 6)
and change it to 3.

41

The first row above (the c_vs_ra_pk row) shows the results for this variable which represents the
Change (not the percentage-change – the c_ at the start is the clue) in the Value Supplied by
consumer RA of commodity PK (capital). The numbers in this row mean that this value changed
from a pre-simulation value of 80 to a post-simulation value of 80.8, which is indeed an increase
of 1 percent, as expected.

You should check the other results shown to see that all prices and dollar values have increased by
1 percent and that all quantities have remained unchanged.

This price homogeneity simulation is one of the few simulations whose results you can predict on
theoretical grounds. Later, in section 4.6 below, you will carry out a simulation whose results
cannot be easily predicted in advance.

Close ViewSOL in the usual windows way by selecting File | Exit from the main menu.

4.5 Looking at the Command File

Here you will look inside the Command file TWOBYTWOHSIM.CMF to get an introduction to the use
of Command files in GEMPACK.

• If you are working via WinGEM, go to the GEMSIM window (which should still be visible on
your screen) and click on the Edit button. This will open the Command file
TWOBYTWOHSIM.CMF in the windows editor TABmate.

• If you are working at the command line, run the GEMPACK windows program TABmate by
double clicking on its icon which should be on your desktop. Then select File | Open from the
main menu and open the file twobytwohsim.cmf which should be in directory c:\mge2gp.

The Command file TWOBYTWOHSIM.CMF is shown below (except that we have left out below a few
comment lines). We describe in sections 4.5.1 to 4.5.4 below the various parts of this file. We explain
in section 4.5.5 why you need a Command file as well as the TAB file for the model.

The GEMPACK Command File TWOBYTWOHSIM.CMF

Auxiliary files = twobytwo ;
! No data are read here, hence no updated data will be produced
Extrapolation Accuracy File = yes ;
Log File = yes ;
Method = Euler ; ! or Gragg
Steps = 4 6 8 ; ! change as needed

! Closure
! -------
!
exogenous
 c_QS_RA_PL ! Change in quantity of endowment
 ! change in quantity for e:pl in $demand:ra
 c_QS_RA_PK ! Change in quantity of endowment
 ! change in quantity for e:pk in $demand:ra
 px ! Percent change in (price of) a commodity
 ! price index for commodity X (%-change)
 ;
Rest endogenous ;

! Shocks
! ------
! Next is a shock to the market price in the omitted market.
! Hence this simulation is a nominal homogeneity simulation.
! [All prices and dollar values should increase by 1% and
! all quantities prices should stay unchanged.]

42

Shock px = 1 ;

! Verbal Description
! ------------------
Verbal Description =
 Nominal homogeneity simulation, shocking px
 ; ! End of Verbal Description

4.5.1 Comments in Command Files

Note that anything on a line after an exclamation mark ! is a comment. Comments are there for you and
for others who use your Command file. Comments are ignored by the program. So, for example, the
whole of the line
! Closure
is a comment. Each comment ends at the end of the line (although there may be ! at the start of the next
line to extend the comment over several lines).

4.5.2 The Closure

This specifies which variables are exogenous (that is, determined outside the model) and which are
endogenous (that is, determined by the model).

You can see that the three variables c_QS_RA_PL, c_QS_RA_PK and px are exogenous and
that the remaining variables are endogenous. The first two exogenous variables represent Changes
(c_) in the Quantity Supplied by consumer RA of commodities PL (labour) and PK (capital)
respectively. The third exogenous variable px represents the %-change in the market price of
commodity X. Note the comments (text following an exclamation mark) in the Command file after
the names of these variables – these comments should help you to decide what to shock when you
prepare your own simulations.

GAMS users may be used to specifying the closure by fixing the level of exogenous variables by
inserting .FX statements in their GAMS file.

4.5.3 The Shocks

In GEMPACK, "shock" is used to describe changes to an exogenous variable which move it away from
its pre-simulation value. The values of the shocks are either %-changes or actual changes in the values
of the exogenous variables. Any exogenous variables which are not shocked will remain at their pre-
simulation value.

In this simulation, there is just one shock, namely a 1 percent increase in the variable px. That is, the
market price of commodity X is assumed to increase by 1 percent (from its pre-simulation value of 1.0
to its post-simulation value of 1.01, as you saw when you looked at the px results in section 4.4 above.
The other exogenous variables (endowments of labor and capital) are unchanged in this simulation.

4.5.4 The Rest of the Command File

Firstly there are the statements:

Auxiliary files = twobytwo ;
Extrapolation Accuracy File = yes ;
Log File = yes ;
Method = Euler ; ! or Gragg
Steps = 4 6 8 ; ! change as needed

• The first tells the program GEMSIM which model to solve – pretty important.

• The last two tell GEMPACK which solution method to use to solve the model. If you are new to
GEMPACK, all you need to know at this stage is that these two statements will produce an

43

accurate solution of the nonlinear levels equations underlying the model in most case (including in
the case of the shock in this simulation). We will tell you a little more about solution methods later
in this document.

• The third statement ("log file = yes ;") tells GEMSIM to record all output going to the screen in a
LOG file which will be called TWOBYTWOHSIM.LOG (the same name as that of the Command
file, but with suffix .LOG).

• The second statement asks GEMSIM to produce a so-called Extrapolation Accuray file (which will
be called TWOBYTWOHSIM.XAC). This file contains detailed information which expert users of
GEMPACK can use to check the accuracy of the different results. If you are new to GEMPACK,
you can ignore this for the time being.

Then there is the statement

Verbal Description =
 Nominal homogeneity simulation, shocking px
 ; ! End of Verbal Description

[This is regarded as a single statement even though it extends over several lines. All Command file
statements end with a semi-colon ";".]

This statement provides a so-called "verbal description" of the simulation. These words should be a
summary of the simulation. They are stored with the simulation results and you can see them whenever
you access these results. The idea is that, if you look at the results several months after you run the
simulation, you should get a good idea of what the simulation is about from the verbal description. [If
you open the Solution file in ViewSOL and click on Description in ViewSOL’s main menu, you are
shown the verbal description (plus some other information automatically added to it by the program).]

4.5.5 Why Have a Command File?

GAMS modellers are used to having the equations of their model and the instructions for solving all in
the same file. In contrast, GEMPACK separates the different parts of a model.

• The equations are in the TAB file.

• The instructions for carrying out a simulation (the closure and shocks) are in a separate file which
is called a Command file.40

• The pre-simulation data for the model is often in a separate file or files (as you will see in section 5
below).

4.6 Other Simulations with TWOBYTWO

The price homogeneity simulation above was not very interesting – indeed, it is really just a check that
the model is not giving silly results.

You can specify other more interesting simulations by specifying different shocks and, perhaps,
different closures. Here we will show you how to specify different shocks. We will introduce different
closures in section 5 below.

4.6.1 Increasing the Labour Endowment – TWOBYTWOLB.CMF

As you saw in section 4.5.1 above, there are two other exogenous variables, namely the endowments
(or supplies) of the two factors labour and capital. In this section we show you how to simulate an
increase of 10 percent in the endowment of labour.

Preparing the Command File TWOBYTWOLB.CMF

40 You can find more details about using GEMPACK Command files to specify a simulation in section
2.8 of GEMPACK document GPD-1.

44

In order to carry out this simulation, you need to prepare a suitable Command file. To do that, follow
the steps below, in which you will start from the Command file TWOBYTWOHSIM.CMF and make
changes to the shock and verbal description statements.

• Open the previous Command file TWOBYTWOHSIM.CMF in the program TABmate.

• Select menu item File | Save As… and save the file with the new name TWOBYTWOLB.CMF.
[We suggest that names for Command files should reflect both the model and the sort of shock.
Hence "LB" since this shock is about labour.]

• Change the name of the variable being shocked from px to c_QS_RA_PL. [It does not matter if
you use upper or lower case, or a mixture. The program does not care about this, though you may
prefer to use a mixture of cases to make your file more readable to humans.]

• How large should the shock be? As indicated above, we want you to simulate a 10 percent increase
in the supply of labour. The variable c_QS_RA_PL represents the change (not the %-change) in
the amount of labour. So, in order to get the right number in the shock statement, you need to
know how much labour is initially available. To find that out you need to look at the q: field in
the e:pl line the $demand:ra block in TWOBYTWO.MGE. As you can see the q: field in the
e:pl line is q:70. Hence consumer RA is supplying 70 units of labour pre-simulation. A 10 precent
increase amounts to 7 units. Hence the shock statement should be
shock c_QS_RA_PL = 7 ; ! a 10 percent increase
[Don’t forget the semi-colon after the "7". The words after the "!" are a comment.]41

• You should change the verbal description. Perhaps change this so that it reads
Verbal description = 10 percent increase in supply of labour ;
(which you can put all on one line).

• This completes the changes, so click on the Save button near the top of the TABmate window.
[Alternatively select menu item File | Save .]

• Then exit from TABmate using menu item File | Exit .

Running GEMSIM to Solve

Now that you have prepared a suitable Command file, you can run GEMSIM to carry out the
simulation.42

• If you are working via WinGEM, make sure that your working directory is still c:\mge2gp.
[Use File | Change both default directories… to check this.] Then open a GEMSIM window via
menu item Simulation | GEMSIM solve…. Then click on the Select button and select the
Command file TWOBYTWOLB.CMF that you have just prepared. Then click on the Run button
to run the simulation. When this has run (there should be no error), click OK since the accuracy
results should be fine43, and then click on the Go to ViewSOL button to look at the results.

41 Provided that you are working with Release 8.0 (October 2002) or later of GEMPACK, an
alternative way of specifying this shock in the Command file is to use the statement
percent_change QS_RA_PL = 10 ;
[See section 5.7 of GPD-3.]
42 If you get errors when you run the simulation, you can compare your Command file
TWOBYTWOLB.CMF with the one called TWOBYTWOLB-OK.CMF which we have supplied.
43 You will see that the face for the variable results is smiling a bit (score of 8 out of a possible 10).
You could increase that if you take more steps (for example, change "steps = 4 6 8 ;" to "steps = 8 10
12 ;" in the Command file.
You will also see that one result is only accurate to 0 figures. If you want to see which one, you can
look in the Extrapolation Accuracy file TWOBYTWOLB.XAC. This is a text file so you can open it
using TABmate. You will see that it is the variable walrasslack which is accurate only to 0 figures.
[The accuracy summary shown in WinGEM uses the levels accuracy which is indicated by the figure
after the "L" near the end of each line.] Most results are accurate to 6 figures "L6" or 5 "L5". However
walrasslack (which should be zero) is very small but oscillating a little. That is why, somewhat
misleadingly, it is shown to be accurate only to 0 figures. All in all this is a little complicated. If you
are new to GEMPACK, we suggest that you ignore this for the time being.

45

• If you are working at the command line, go to a DOS-like box, (for example, via TABmate’s menu
item File | DOS in current folder) and then change directory into c:\mge2gp. Then you can
run the simulation via the command
gemsim -cmf twobytwolb.cmf
When this has run (there should be no error), run ViewSOL and load in the simulation results
which will be in file twobytwolb.sl4.

Looking at the Results

As before (see section 4.4), click on the macro line in the Contents page. You will see the results for
all variables.

• First find the variable shocked (what colour are the numbers for exogenous variables in
ViewSOL?). Is the shock correct?

• Next check a few of the results. For example, check that your results are approximately:
x 4.088 y 3.886 py 0.9577 pl -4.6538 pk 4.8809
(those above are all percentage changes)

• What would you expect to happen to the market price pl of labour? Why? Has this happened?

• What would you expect to happen to the market the price pk of capital? Has this happened?
[Capital has become relatively scarce which is why its price has increased, while labour has
become relatively abundant, which is why its price has fallen.]

• Why is the result for px zero? [Think about the closure.]

• What has happened to the market prices px and py of the commodities? Why? [Think about the
prices of the input factors. Which sector is more labour intensive – see the data in the MGE file?]

• What has happened to the outputs of the two commodities? [The variables are p_qd_c_px (%-
change in output of X) and p_qd_c_py (%-change in output of Y). For example, if you click on
p_qd_c_px in the left-hand column, you will see in the bottom line of the ViewSOL screen a
description of this variable "Quantity (level) in q: field of i:px in $prod:c". This description is
taken from the line in the TAB file TWOBYTWO.TAB on which this variable is declared, as you
can see if you open the TAB file.]

We do not attempt any further explanation of the results here (where we are concentrating on the
mechanics of carrying out the simulations).

We suggest that you close ViewSOL in the usual windows way.

4.6.2 Other Simulations with TWOBYTWO

You can carry out other simulations by changing the shocks. For example,

• you might like to simulate the effects of an increase in the supply of capital, holding the supply of
labour fixed and holding the numeraire px fixed. If so, the only shock statement will be
shock c_QS_RA_PK = <number> ;
[You might like to experiment with different numbers.]

• you might like to simulate the effects of increases in both the supply of labour and of capital
(holding the numeraire px fixed). If so, the shock statements will be
shock c_QS_RA_PL = <number> ;
shock c_QS_RA_PK = <number> ;
[You might like to experiment with different numbers.]

In each case, prepare a suitable Command file by editing an existing one. Then run GEMSIM to carry
out the simulation and ViewSOL to look at the results.

4.7 Looking at the TAB File TWOBYTWO.TAB

Open the TAB file TWOBYTWO.TAB in TABmate. [For example, use File | Edit file from
WinGEM's menu.] Look at the various parts of the file.

46

If you are a GAMS programmer,

• some of the equations in the TAB file will look familiar to you.
For example, look at the equation called E_ra. This says that the total value of the income
accruing to consumer ra is equal to the total value of the endowments of labor and capital. And
there are easily understood equations for the values VS_RA_PL and VS_RA_PK just above.

• some of the equations are simple linearized versions of the obvious levels equations.
For example, look at the equation called E_p_vs_x_px. As the comment above it in the code
indicates, this relates to the o:px line in the $prod:x block. This equation is calculating the
percentage change p_vs_x_px in the value supplied in $prod:x of commodity px. This
percentage change is the sum of the percentage change px in the price of the commodity and of
the percentage change p_qs_x_px in the corresponding quantity. [Of course the levels equation
says that the value is equal to the price times the quantity.]

• you may be surprised by the behavioural equations (demand and supply functions). For example,
look at the equation called E_p_qd_x_pl. This is the labor demand equation in sector $prod:x
which comes from a CES function. GAMS programmers will be accustomed to working with
nonlinear CES demand functions. Equation E_p_qd_x_pl is the well-known linearized version of
the relevant CES function. The equation says:
p_qd_x_pl = x – 1 * [pl – mc_x] ;
Here x represents the percentage change in the activity level of sector x, pl represents the
percentage change in the price of labor and mc_x represents the percentage change in the
marginal cost of production in sector x. [Of course, mc_x is a weighted sum of percentage
changes pl and pk in the prices of labor and capital – the two inputs to sector x – as you can
see by looking at the equation called E_mc_x.44] The linearized equation E_p_qd_x_pl has
two simple consequences:
(i) If the activity level x in this sector increases by 1 percent, so does the demand for labor
p_qd_x_pl in this sector.
(ii) If the price of labor increases so that it becomes 1 percent higher than mc_x, then the demand
for labor in this sector will fall by 1 percent. [The elasticity 1 is shown explicitly in the linearized
equation above.] GEMPACK modellers find the linearized versions of these CES behavioural
equations give more insight into the economics than the corresponding levels CES functions.

• you may be surprised by the large number or variables represented explicitly in the TAB file.
Results (changes or percentage-changes) for all of these are automatically given in the Solution file
which is produced when you carry out a simulation. For example, there are results for prices and
quantities for all nests. [GAMS/MPSGE experts use the $report: section in an MPSGE file to
generate reports of desired results. Any $report: section in your MGE file is ignored by
MGE2GP (see section 7.8.1) since the GEMPACK results normally include all the results you
could want.]

If you are a GEMPACK expert,

• you may be surprised to see how many levels equations are explicitly in the TAB file. You may
learn something from this. For example, look at the market clearing equation called E_pl for
commodity pl. Basically it says that
 TQD_PL = TQS_PL
which obviously says (in the levels) that demand equals supply. Above this equation you can see
the equally simple levels equations which calculate the values of demand and supply. [See section
3.2.4 for more details about this.]

• have a look at the large number of Assertions in the TAB file.
1. Look at the two Assertions in the code for the $prod:x block in TWOBYTWO.TAB. The
first one is an Assertion(Initial) which checks that costs and revenue are equal in the initial
database for this sector x.45 The second one is an Assertion(Always) which checks that costs and

44 That equation looks a bit complicated because of the IF tests. Basically that equation says that
 mc_x = VD_X_PL*pl + VD_X_PK*pk.
45 See section 7.1 for an explanation of the presence of BALTOI in this Assertion

47

revenue are equal in this sector after all steps in a multi-step calculation.
2. Look at the two Assertions about supply and demand of commodity pk near the end of the file.
[Search for "equal for pk".] These check that supply equals demand for pk in the initial database
and after all steps of a multi-step calculation. There are similar assertions for all other
commodities.
These Assertions provide useful checks that any simulation is proceeding as expected. In order to
satisfy them at all steps of a multi-step calculation, a fairly high degree of accuracy is required.
You may need to increase the number of subintervals in order to satisfy these Assertions.

48

5. Solving the Other Example Models Using GEMPACK

In section 4 above, you carried out simulations with the first of the example MPSGE models,
TWOBYTWO. In this section you will carry out simulations with the other MPSGE models we have
supplied.

We give you hands-on instructions (less detailed than in section 4 above) for working with the SJMGE
example in sections 5.1 and 5.2. You will carry out simulations with other example models in section 5.3.

5.1 The SJMGEHSIM Simulation with the SJMGE Model

In this section you will carry out simulations with the SJMGE version of the Stylized Johansen model.
The MGE file for this model was introduced in section 2.2.1 above.

• If you are working at the Command line, change to the directory containing the MGE file
sjmge.mge for the Stylized Johansen model.

• If you are working via WinGEM, set both default directories to the directory containing the MGE
file sjmge.mge for the Stylized Johansen model.

First convert the MGE file sjmge.mge to GEMPACK TAB and Command files by running
MGE2GP. As indicated in section 4.2.1 (command line) or 4.3.2 (WinGEM) above, you can do this by
going to a DOS box in the directory in which you have the file sjmge.mge and entering the
command46

mge2gp sjmge

This should create the three files sjmge.tab, tsjmge.sti and sjmgehsim.cmf.

Carry out the simulation following the steps in the either section 4.2 (command line) or 4.3 (using
WinGEM) above, replacing TWOBYTWO by SJMGE.

Look at the simulation results from the SJMGEHSIM.CMF as in section 4.4 above. Note that prices
increase by 1% and that quantities are unchanged.

5.1.1 Looking at the Starting Header Array File SJMGE.HAR

You can see the benchmark (or pre-simulation) data for this model by looking at the SAM shown in
section 2.2.1. These data are grouped into matrices (for example, qfacin denotes the 2x2 matrix of
factor inputs into the two sectors) as indicated there.

For GEMPACK, these data are held on what is called a Header Array file. Each matrix of data has an
associated 4-character header which is used to refer to the array.

To look at the Header Array file sjmge.har containing the starting data for SJMGE, run the program
ViewHAR and open this file SJMGE.HAR, following the instructions below.

• If you are working at the command line, you can type in the command
viewhar sjmge.har
and the program ViewHAR will start running and load in the file SJMGE.HAR.

• If you are working via WinGEM, select menu item HA files | View ViewHAR from WinGEM’s
main menu. [That is, click on HA files and then select menu item View ViewHAR.] This will start
ViewHAR running. Then, go to ViewHAR’s File menu and select menu item Open Header
Array file. Select the file SJMGE.HAR. Then ViewHAR will load this file.

In either case ViewHAR will show the contents of the file SJMGE.HAR on the Contents screen.

46 This assume that you have installed the program MGE2GP in a directory which is on your Path (as
described in section 4.1).

49

Each of the rows corresponds to a different array of data on the file. Look at the column under the
heading Name to see what data are in these arrays.47

 Header Type Size Name

1 COMN RE SECTxSECT Intermediate inputs of commodities to ind..
2 FACN RE FACxSECT Intermediate inputs of primary factors - values
3 HOUS RE SECT Household use of commodities - values
4 FAC 1C 2 length 12 Set FAC Factors
5 SECT 1C 2 length 12 Set SECT Sectors
6 GOOD 1C 2 length 12 Set GOOD Commodities
7 ENDW RE FAC Endowments - values

The first array is the "Intermediate inputs of commodities to industries - values".
The Header COMN is just a label for this array. (Headers can have up to 4 characters.)
The array is of Type RE. The R means this is an array of real numbers. The E means that this
array has set and element labelling (see chapter 5 of GPD-4).

Double click on COMN to see the numbers in this array.

COMIN s1 s2 Total
s1 4.000000 2.000000 6.000000
s2 2.000000 6.000000 8.000000
Total 6.000000 8.000000 14.000000

Compare these numbers with the comin matrix in the SAM in section 2.2.1. The actual data in
the file at this header is just the 2x2 matrix. ViewHAR calculates and shows the row and column
totals.

To return to the Contents Screen, click on Contents in the ViewHAR menu.

Look at the other Header Arrays called FACN and HOUS to see where their numbers fit in the
SAM.

Close ViewHAR in the normal Windows way by selecting File | Exit .

5.1.2 The Updated Data SJMGEHSIM.UPD

When you carry out a simulation via GEMPACK, the updated data is produced automatically. Ideally,
the updated data shows how the economy will be after the shocks have worked their way through the
system.

The data in the starting data file SJMGE.HAR could be thought of as representing quantities or as
representing values. When you work with the GEMPACK version of the model produced by the
program MGE2GP, you should think of the

starting data as representing values.

So the updated data should show you the new values (as they would be after the shocks have been
applied).

The updated data after the SJMGEHSIM.CMF simulation are in Header Array file SJMGEHSIM.UPD.
To check the data in it, run ViewHAR and open file SJMGEHSIM.UPD. In the simulation, all prices
increased by 1% while all quantities remained unchanged. Hence all values should have increased by
1%. Check this by comparing the data in SJMGEHSIM.UPD with the corresponding data in the pre-
simulation data file SJMGE.HAR. For example, the pre-simulation HOUS values are 2 (s1) and 4

47 You may see extra columns. Exactly what you see is controlled by the section For real matrices,
Contents shows: shown when you select menu item Options under the File menu.

50

(s2) while the post-simulation values at header HOUS in file SJMGEHSIM.UPD are 2.02 (s1) and
4.04 (s2), as expected.48

5.2 Increasing Endowment of Labor in SJMGE – SJMGELB.CMF

Look at the Command file SJMGELB.CMF. This Command file carries out a simulation with SJMGE
in which the supply or labor is increased by 10%.

Open SJMGELB.CMF in TABmate. Look at the shock statement. This is

Percent_change QS_Y_PF("labor") = 10 ;49

In order to carry out this simulation with SJMGE, you only need to do the GEMSIM step following the
method in section 4.2 or 4.3 above.50

Carry out this simulation by running GEMSIM, taking inputs from Command file SJMGELB.CMF.

Look at the simulation results by loading the Solution file SJMGELB.SL4 into ViewSOL. You may
find it interesting to look at the following results. To follow the suggestions below, it will be helpful if
you use the format "Arrange vectors by name". To do that, click on the Format… menu item on
ViewSOL’s main menu. Then click on Arrange vectors by name under "Vector Options". Then click
on the OK button.

• First check that the shock has been applied correctly – this is always a good idea. To do that, look
at the results for variable c_QS_Y_PF. [To do that, go to the Contents page of ViewSOL. You
will see a line corresponding to the variable c_QS_Y_PF. In the Name column you see
Quantity (levels) for e:pf(fac) in $demand:y which suggests that this variable relates to the
supply of the factors. The "c_" are the start of the name indicates that this variable reports the
changes in these endowments. To see the simulation results for this variable, click on
c_QS_Y_PF in the Contents list.] The simulation results are in the first column (headed
sjmgelb). Note that the simulation results show c_QS_Y_PF("labor")=0.4 and
c_QS_Y_PF("capital")=0. These are changes (not percentage changes), as the "c_" prefix
suggests. To check that the endowment of labor has increased by 10%, you need to check the pre-
simulation level. To do that, look in the second column (the one headed Pre sjmgelb). You can see
that the pre-simulation value for QS_Y_PF("labor") is 4 and (look at the next column headed
Post sjmgelb) that the post-simulation value for QS_Y_PF("labor") is 4.4. So, as expected,
the shock is an increase of 10% in the endowment of labor. And there is no change in the
endowment of capital. To get back to the Contents page, click on the Contents menu item.

48 On reflection you should not be surprised. Remember that the numbers in SJMGE.HAR represent
quantities, and that quantities do not change in the homogeneity simulation. [GEMPACK experts used
to the standard implementation of the Stylized Johansen model supplied with GEMPACK may be
surprised. They need to remember that the data there in SJ.DAT represent dollar values, not quantities.
So the data there increase by 1% in a homogeneity simulation.]
49 QS_Y_PF("labor") is the name used in the TAB file for the amount (quantity) of labor
available. The symbol QS_Y_PF(f) is a levels variable. Associated with this levels variable is the
linear variable c_QS_Y_PF(f) which reports the changes in QS_Y_PF(f). Also in the TAB file
is the linear variable p_QS_Y_PF(f) which represents the percentage-changes in QS_Y_PF(f). The
pre-simulation value of QS_Y_PF("labor") is 4 – see the ENDOW("labor") value in the
Header Array file SJMGE.HAR. Thus alternative shock statements
shock c_QS_Y_PF("labor") = 0.4 ;
shock p_QS_Y_PF("labor") = 10 ;
would produce the same results.
50 You do not need to run TABLO again since the TAB file SJMGE has not changed. So the output
from TABLO will be unchanged from when you ran it when doing the homogeneity simulation in
section 5.1. But you do need to run GEMSIM since the shocks are different from those in that
homogeneity simulation.

51

• Look at the changes in the prices of the factors – that is, look at the results for variable pf. Notice
that the price of labor falls (by about 3.1%) while the price of capital rises (by about 6.6%). Is this
what you expect?51

• Look at the prices of the commodities – that is, look at the results for variable pc. Can you
understand why the price of the first commodity has fallen and why the price of the second
commodity has fallen?52

• In order to understand which of the commodities became less expensive, you need to know which
is more labor intensive. To do that, you need to look at the input data which is in Header Array file
SJMGE.HAR. To look at that data, run the program ViewHAR and open the file SJMGE.HAR.
The data about factor inputs to production is at header FACN. The Coefficient is called FACIN.
Click on this header in the Contents page of ViewHAR. You will see the FACIN data. For
example, FACIN("labor","s1")=1 and FACIN("labor","s2")=3. Which sector (s1
or s2) is more labor intensive? [To see that, you need to look at shares. So click on the drop-down
box in the top left-hand corner of the ViewHAR screen – the one which says None. Select Col to
see the column shares. This tells you that 50% of the total factor input into s1 is labor while 75%
of the factor input into s2 is labor.53 Hence sector s2 is more labor intensive (and sector s1 is
more capital intensive). Since the price of labor has fallen and the price of capital has risen (see
earlier), you should not be surprised to see that the pc("s1") has fallen and that pc("cs2")
has risen.

• Be careful about interpreting simulation results for prices. Above we said that certain prices have
risen and that others have fallen. These sound like absolute statements. In fact, when we talk about
simulation results for prices, we should always say relative to the numeraire. In this simulation,
the numeraire is pw (the consumer price index). [To see this, look in the Command file
SJMGELB.CMF. You can see that pw is exogenous and not shocked.] So above, when we said
that some price has risen, we should have added "relative to pw".

• In the MGE file SJMGE.MGE you see the line
 e:pf(fac) q:endow(fac)
In the MGE file, endow(fac) represents the quantity of the factors. But in the TAB file,
ENDOW(fac) is used to denote the value of the factors. So the p_ENDOW results represent
percentage changes in the values of the factors. Look at the p_ENDOW results by clicking on the
p_ENDOW in ViewSOL's Contents page. For labor, you will see percentage increase of 6.56%
from a pre-simulation value of 4 to a post-simulation value of 4.26. You know that the quantity of
labor increased by 10% (this is the shock). The price pf("labor") fell by 3.13%. That
explains why the value ENDOW("labor") increased by less that 10%.54

5.2.1 The Updated Data after the SJMGELB.CMF Simulation

When you carry out a simulation via GEMPACK, the updated data is produced automatically. Ideally,
the updated data shows how the economy will be after the shocks have worked their way through the
system.

The data in the starting data file SJMGE.HAR could be thought of as representing quantities or as
representing values. When you work with the GEMPACK version of the model produced by the
program MGE2GP, you should think of the

51 Which factor has become relatively scarce?
52 What happened to the prices of the factors? Which commodity requires a larger share of labor input?
53 The value shares are the same as the quantity shares since we are assuming that prices of the factors
are originally 1.
54 From the percentage changes in the quantity and price, the new value for ENDOW("labor") should
equal
4 * 1.10 * 0.9687 = 4.26
as shown in the "post sjmgelb" column. [Quantity increase of 10% multiplies the value by 1.10. Price
decrease of 3.17% multiplies the value by 0.9687.]

52

starting data as representing values.

So the updated data should show you the new values (as they would be after the shocks have been
applied).

The updated data after the SJMGEHSIM.CMF simulation are in Header Array file SJMGELB.UPD.
To check the data in this file, run ViewHAR and open file SJMGELB.UPD.

First look at the updated EDNOW data (which is at header ENDW). Note that the updated values are
4.26 (labor) and 2.13 (capital). These are consistent with the percentage changes in the quantities and
prices reported in the simulation. [For details, look at the explanation of the p_ENDOW("labor")
results – see a little earlier. A similar calculation works for capital, whose quantity has not changed and
whose price has increased by 6.56%.]

Now look at the updated HOUS data (which is at header HOUS). [To do that, first click on Contents
to get back from the ENDOW data to the Contents page, then click on header HOUS in the Contents.]
You can see the post-simulation values of commodities s1 and s2 demanded by households. Again
these values should be consistent with the simulation results for the associated prices and quantities.
[For example, the price of commodity s1 has increased by 0.63% while the quantity of commodity
s1 used by households – this is the p_QD_W_PCGOOD("s1") simulation result – has increased by
5.88%. Hence the value has increased by about 6.56% (from 2 to 2.13).

If you wish to compare with the pre-simulation values, you need to also open the original data in file
SJMGE.HAR. Do that by running a second copy of ViewHAR and opening file SJMGE.HAR. You
can see that the pre-simulation values of HOUS are 2 (s1) and 4(s2). The post-simulation values are
about 2.13 (s1) and 4.26 (s2).55

5.2.2 Reversing the SJMGELB.CMF Simulation – SJMGELBBACK.CMF

One excellent way of testing a model and its updated data is to run a simulation which reverses the
shocks.

For example, in SJMGELB.CMF you increased the amount of labor by 10%. The reversal simulation
is to start from the data updated after the original simulation and to reduce the amount of labor by the
corresponding amount. The simulation results from this reversal simulation should be opposite of those
in the original simulation and the updated data after this reversal simulation should be the same as
those from which the original simulation started.

In this section you will carry out the reversal SJMGELBBACK.CMF of the SJMGELB.CMF
simulation, and will check the assertions in the paragraph above about the simulation results and the
updated data.

The shock statement in SJMGELB.CMF s

Percent_Change QS_Y_PF("labor") = 10 ;

So, you might expect that the shock for the reversal simulation is to make a percentage change of –
10%. But in fact the opposite of a 10% increase is a –9.090909% decrease.

To see this, consider some quantity X which is originally equal to X0. If we increase it by 10%, the
new value X1 will be given by X1 = 1.1*X0. Now, if we want to move from X1 back to X0, the
change required is X0-X1=-0.1*X0. Hence the percentage change required, starting from X1, is
equal to

55 The is a neat way to have both ViewHARs visible on the screen at the same time. Go to the
ViewHAR which has the updated data SJMGELB.UPD loaded. Look in the bottom right-hand corner
of the screen. You will see a green F or L, then to its left 6 arrows. To their left a shape that looks a bit
like an X. If you click (very carefully) on the left hand part of that X, this ViewHAR will occupy just
the left-hand part of the screen. Then go to the ViewHAR which has the original data SJMGE.HAR
loaded and click (carefully) on the right-hand part of the X. This ViewHAR will then occupy the right-
hand half of the screen. That makes it easy to compare pre- and post-simulation items in the data. [For
example, make the QHOUS data visible in both ViewHARs.]

53

100*[–0.1*X0/X1] = 100*[–0.1*X0/(1.1*X0)] = 100*[–0.1/1.1] = –9.090909%.

Hence the shock statement in SJMGELBBACK.CMF is

Percent_Change QS_Y_PF("labor") = -9.090909 ;

When carrying out the reversal simulation, start from the data updated after the original simulation.
Hence, in SJMGELBBACK.CMF you see the statement

File Input = sjmgelb.upd ;

since SJMGELB.UPD contains the data updated after the SJMGELB.CMF simulation.

Now look at the SJMGELBBACK.CMF Command file (by opening it in TABmate).

Then carry out the reversal simulation by running GEMSIM taking inputs from the Command file
SJMGELBBACK.CMF.

5.2.3 Checking the SJMGELBBACK.CMF Results

This is best done by loading the results from the two simulations into ViewSOL. So, first open
SJMGELB.SL4 (the results from SJMGELB.CMF) into ViewSOL. Then, without closing ViewSOL,
load SJMGELBBACK.SL4 (the results from the reversal simulation) via ViewSOL’s File | Open
menu item.

Go to the ViewSOL Format menu and select Arrange vectors by name.

First look at the c_ENDOW results by clicking on this row in the Contents screen. You should see the
following. The first 4 columns are the simulation, PreSim, PostSim and Change results from the
original simulation. The last 4 columns are from the reversal simulation.

c_ENDOW LB Pre LB Post LB Ch LB back Pre back Pst back Ch back

Labor 0.2624 4.0000 4.2624 0.2624 –0.2624 4.2624 4.0000 –0.2624

Capital 0.1312 2.0000 2.1312 0.1312 –0.1312 2.1312 2.0000 –0.1312

Notice that the simulation results for the reversal are indeed the negative of the results from the original
simulation. [These simulation results are the changes in the value of these endowments.]

Now try the pf results. These are percentage changes in the prices of the factors. You should see the
following.

Pf LB Pre LB Post LB Ch LB back Pre back Pst back Ch back

Labor –3.1271 1.0000 0.9687 –0.0313 3.2280 1.0000 1.0323 0.0323

Capital 6.5602 1.0000 1.0656 0.0656 –6.1563 1.0000 0.9384 –0.0616

At first glance, these don’t look right. But they as expected are once you realize that prices are
normalized back to one at the start of all simulations, including the reversal simulation.

First look at the percentage changes in the price of labor. Is 3.2280 the reverse of –3.1271? Well, yes, if
you follow the general rule stated below.

The reversal of a percentage change of P is equal to –100*P/(100 + P).56

This says that the reversal of a decrease of –3.1271% is an increase of about 3.2280% (which you can
check using the formula above and a calculator).

56 To check this, suppose that the initial value is 100. Then after the first simulation, the value will be
100+P. Hence the reversal percent change is 100*Change/NewValue = 100*(-P)/(100+P).

54

Now try the c_TQD_PC results. These are changes in the quantity demanded of each of the two
commodities. You should see the following.

c_TQD_PC LB Pre LB Post LB Ch LB back Pre back Pst back Ch back

s1 0.4708 8.0000 8.4708 0.4708 –0.4738 8.5248 8.0510 –0.4738

s2 0.8279 12.0000 12.8279 0.8279 –0.8253 12.8272 11.9619 –0.8253

Look at commodity s1. There is an increase of 0.4708 in the first simulation. The pre-simulation
quantity is 8.0000 and the post-simulation quantity is 8.4708. Why is the pre-simulation quantity for
the reversal simulation shown as 8.5248 (rather than 8.4708 – the post-sim quantity from the initial
simulation)? This is because prices (including PC) are re-normalized to 1 at the start of each
simulation. The dollar value for the output of commodity PC(“s1”) in the updated data
SJMGELB.UPD is indeed 8.5248 (as you can see by adding across the s1 rows in the COMIN and
HOUS matrices in the Header Array file SJMGELB.UPD). This is why the Pre-simulation number for
the SJMGELBBACK simulation is shown as 8.5248. It explains why the changes (0.4708 and –0.4738)
are not the negatives of each other. However the fractional changes 0.4708/8 and –0.4738/8.5248 are
reversals of each other (as you can check with a calculator). Indeed, you can look at the
p_TQD_PC(“s1”) results in ViewSOL where you will see the relevant percentage changes.

In summary, the results of the SJMGELBBACK.CMF simulation are the reversals of those for the
SJMGELB.CMF simulation. But you have to work a bit hard to confirm this.

5.2.4 Checking the Updated Data after the SJMGELBBACK.CMF Simulation

The GEMPACK program CMPHAR can be used to compare the data on two Header Array files. You
can run it via WinGEM using menu item HA files | CMPHAR Compare . Select SJMGE.HAR as
Header Array file 1 and select SJMGELBBACK.UPD as Header Array file 2. Then click on the Run
button. When this finishes, click on the View print file button.

Go to the end of the file. You will see a summary which should include something like the following.

 Total number of NON-CHARACTER data headers compared is 4.
 Total number of differences found is 12.
 Total of all absolute differences is 3.92198563E-05.
 Average of all absolute differences is 3.26832128E-06.
 Header where largest difference was found is 'COMN'.
 Largest absolute difference found is 8.10623169E-06.
 Total number of difference ratios reported is 12.
 Total of all difference ratios is 1.67688031E-05.
 Average of all difference ratios is 1.39740030E-06.
 Header where largest difference ratios was found is 'COMN'.
 Largest difference ratio found is 2.02656202E-06.
 Total number of all sign changes is 0.
 Total number of all differences positive to zero is 0.
 Total number of all differences negative to zero is 0.

The largest absolute difference is very small (about 0.000003). The largest difference ratio is also
very small (about 0.000002).57 These mean that the data in the two files are essentially identical, as we
hoped and expected.

This is a further confirmation that the second simulation is the reversal of the first one.

57 Scientific notation is used in the print file. For example, the largest difference ratio is 2.02656202E-
06. Here the “E-06” means “multiplied to 1/10^6” – that is, multiplied by one over one million. The
difference ratio between two values V1 and V2 is [V2-V1]/V1.

55

5.3 Carrying Out Simulations with the Other Example Models

Besides TWOBYTWO and SJMGE (which are covered above), the other examples models supplied
are:

JOINT, TAXOUT, TAXIN, EMPLOY, OPEN, BOP, TARIFF and DIFFTAX.

The MGE files for these models are discussed in section 2 above.

In each case, when you run MGE2GP on these MGE files, you will get

• a Command file for carrying out a homogeneity simulation. The name has "HSIM" added after the
name of the model. For example, this Command file is called TAXINHSIM.CMF for the TAXIN
model.

• a Stored-input file which you should use in order to run TABLO. The name has "T" added before
the name of the model. For example, this Stored-input file is called TTAXIN.STI for the TAXIN
model.

We also supply a Command file which you can use to carry out a non-trivial simulation with the model.
The name is the name of the model followed by suffix ".CMF". For example, this Command file is
called TAXIN.CMF for the TAXIN model.

The steps for working with one of these models are always the same.

• Run the program MGE2GP to convert the MGE file to GEMPACK TAB, STI and Command files.
[See section 4.2.1 (command line) or 4.3.2 (WinGEM) for details.]

• Run TABLO taking inputs from the Stored-input file. [For example, use TTAXIN.STI for model
TAXIN.] This will produce output for GEMSIM. [See section 4.2.2 (command line) or 4.3.3
(WinGEM) for details.]

• Run GEMSIM using the HSIM Command file to carry out a homogeneity simulation. [For
example, use Command file TAXINHSIN.CMF with the TAXIN model.] This will produce a
Solution file containing the results. [See section 4.2.3 (command line) or 4.3.4 (WinGEM) for
details.]

• Whenever you carry out a simulation, use ViewSOL to look at the results (as in section 4.4).

• You can then run GEMSIM to carry out the non-trivial simulation we have supplied. Use the
Command file we have supplied. [For example, use the Command file TAXIN.CMF with the
TAXIN model.] Look at the Command file to see what the shocks are.

• You can then carry out different simulations with the model. For example, change the shocks in
the example Command file we have supplied.

We recommend that you go through these steps for several of the example models.

Below (in section 5.3.1), we discuss in detail a simulation with EMPLOY. We have chosen to do that
example in detail in order to encourage you to work through a simple example in which rationing (see
section 2.4) applies.

In sections 5.3.3 and 5.3.4 we give some details about the closures of these models.

5.3.1 A Simulation with EMPLOY

First run MGE2GP to convert EMPLOY.MGE to TAB, STI and Command files.

Then run GEMSIM to carry out the simulation in the Command file EMPLOYTO.CMF we have
supplied. Below you will work through the results of this simulation.

First look at the Command file EMPLOYTO.CMF by opening it in TABmate.

What is the shock?

The shock statement is
Final_level TOPYPDGOV("sind",o) = uniform 95 ;
Levels variable TOPYPDGOV is the power of the tax levied by gov on the outputs of

56

commodity pd from sector $prod:y(s) [see the TAB file]. Hence the above Final_level
statement means that the post-simulation values of the powers of these taxes on outputs of
both commodities from sector "sind" should be 0.95. Since this is an output, the value of 0.95
means a tax (not a subsidy – see section 2.3.2) of 5% ad valorem rate.

What are the pre-simulation values of these tax rates?

You can see from the relevant line
 o:pd(o) q:supply(s,o) a:gov t:bto(s,o)
in EMPLOY.MGE that the pre-simulation tax rates are given by the pre-simulation values of
Coefficient BTO. Open the pre-simulation database file EMPLOY.HAR in ViewHAR and
look at the BTO values. You can see that they are all zero. Hence there are no taxes on outputs
of pd in the pre-simulation database and so in EMPLOYTO.CMF you are simulating the
introduction of a 5% ad valorem tax.

In this model, there is a rationing variable EPL on the endowment of labor – see the e:pf("lab")
line in the $demand:ra block. And there is a $constraint:epl block which gives the extra
linearized equation

 pf("lab") = pu ;

This equation says that the percentage changes in the price of labor pf("lab") and the percentage
change in the price of (household) utility pu are equal. You might like to re-read section 2.4.1 to
refresh your memory as to how this rationing works.

What happens to the amount of labor in this simulation?

Recall that the actual amount of labor is always equal to the product of the levels variables
ENDL and EPL. [ENDL is the value in the q: field in the e:pf("lab") line and EPL
is in the r: field in that line.]

The pre-simulation values are: 100 for ENDL and 1 for EPL – look at EMPLOY.HAR in
ViewHAR to see these values. Hence the pre-simulation quantity of labor is 100*1=100.

To see the post-simulation values, open the Solution file EMPLOYTO.SL4 in ViewSOL. Go
to the macros results and look at the simulation results for the two relevant variables, namely
c_ENDL (change in ENDL) and c_EPL (change in EPL). You can also see the post-
simulation levels values for these levels variables in the Post employto column. Notice that
these post-simulation values are 100 for ENDL (this is exogenous and does not change in this
simulation) and about 2.04 for EPL (which increases by about 104% from its pre-simulation
value of 1). Hence the post-simulation quantity of labor is about 100*2.04=204. Thus the
output tax results in a very large increase in the quantity of labor.

What happens to the prices of labor and capital?

To see this, look at the simulation results for variable pf. Note that these results are

 pf("lab") = 0 and pf("cap") = –2.70.

Why does the price of labor not change?

It is tied to the variable pu by the $constraint:epl equation. And variable pu is the
numeraire (which is not shocked). Hence you should interpret all price results as being relative
to the numeraire pu.

5.3.2 Reversal Simulations

For each of these models, we also supply a Command file which reverses the standard simulation. For
example, there is a Command file DIFFTAXBACK.CMF which reverses the shocks in
DIFFTAX.CMF. In each case you can check that the simulation results are reversed (following the
methods outlined in section 5.2.3) and that the updated data after the reversal simulation is the same as
the initial data for the model (using CMPHAR, as explained in section 5.2.4).

57

5.3.3 The Standard Closure

The Command files for carrying out a homogeneity simulation have the "standard" closure for the
model. In this standard closure,

• endowments are normally exogenous.
For example, in TAXIN, the only endowments are the commodities pf(f). You can see that
variable c_ENDOW is exogenous in the file TAXINHSIM.CMF. In this model, c_ENDOW(f) is
the change in the quantity of commodity pf(f) – see the e:pf(f) line in TAXIN.MGE.
More precisely endowments which are exogenous unless they are rendered endogenous because
they are rationed via an associated r: field (see section 2.4). And even then the quantity in the
relevant q: field is on the exogenous list. For example, in EMPLOY, the variable c_ENDL
(which is the change in the quantity in the q: field in the rationed e:pf("lab") line) is shown as
exogenous. But remember that the actual quantity of labor used is not ENDL but rather the product
ENDL*EPL since EPL is the rationing variable. So, although ENDL is exogenous, the actual
quantity of labor used is not exogenous.

• The powers of the taxes are exogenous.
For example, in TAXINHSIM.CMF you will see that variables TIYPDGOV and TID_VA_0001
are exogenous. The first of these is the power of the tax accruing to agent gov from the
i:pd(o) line in the $prod:y(s) block. The second of these is the power of the tax accruing
to agent gov from the i:pf(f) line in the $prod:d_va_y(s) block (which is written by
the program MGE2GP when it splits the va nest in the original $prod:y(s) block (see
section 3.1.2).

• the numeraire is exogenous.

• all other variables are endogenous.

5.3.4 Closure Changes

There are some simple ways in which you can change the closure.

• You can change the numeraire. As explained in section 7.9, the choice of numeraire is somewhat
arbitrary. So you can experiment with different numeraires. For example, you could change the
numeraire for TWOBYTWO from px to, say, py (or pl).

• We have chosen to include the powers of the taxes in the standard closure. Alternatively we could
have chosen to include the tax rates in this closure. So, whenever you see the power of a tax in the
closure, you could replace it with the corresponding rate. For example, in TAXIN you could
replace the percentage-change tiypdgov in the power by the change c_tirypdgov in the
associated rate.

5.4 Other Features of GEMPACK

Now that you have worked this far through the document, you are familiar with many of the important
features of GEMPACK. In this section we make brief mention of a couple of other features you might
like to be aware of.

5.4.1 AnalyseGE for Analysing Simulation Results

With modern software, it is easy to generate lots of numbers (model results). Understanding them is
more difficult.

AnalyseGE is a windows program which aims to assist you in analysing simulation results. This gives
you point and click access to the equations of the model, and to the data and consequences of it. You
can decompose equations to see which parts are most important.

You can find a detailed hands-on introduction to AnalyseGE (in the context of a simulation with the
Stylized Johansen model) in chapter 6 of GPD-8.

58

5.4.2 TABLO-Generated Programs for Simulations

Until now we have only introduced you to the program GEMSIM for carrying out simulations.
GEMPACK users with a Source-code version of GEMPACK can produce so-called TABLO-generated
EXEs for carrying out simulations.

TABLO is run slightly differently than when you intend to run GEMSIM. To produce a TABLO-
generated program, you need to give response

wfp ! Write a fortran program

instead of "pgs" at the Code stage of TABLO. Then TABLO produces a Fortran program especially
tailored for fast solution with the model in question. For example, if you are processing SJMGE.TAB,
TABLO will produce SJMGE.FOR.

Then you need to compile and link this program to produce the corresponding executable image (for
example, to produce SJMGE.EXE from SJMGE.FOR). You can run this TABLO-generated executable
image instead of GEMSIM to carry out simulations with the model. Compiling and linking require a
suitable Fortran compiler and can only be done by those with a Source-code version of GEMPACK.
You cannot produce TABLO-generated EXEs with an Executable-Image version (or the Demonstration
version) of GEMPACK.

TABLO-generated programs have two main advantages over GEMSIM.

• They are much faster for large models. (See chapter 4 of GPD-8 for some figures.)

• You can distribute them to others who can use them to carry out simulations with the model. The
persons you distribute them to can change the closure, shocks and starting data. They do not need a
GEMPAC licence (except for large models when the inexpensive Introductory GEMPACK
licence, costing only about $US200, is required).

5.4.3 Solution Methods

GEMPACK usually solves the model using Euler’s or Gragg’s method. These are methods for solving
initial value problems. Usually three separate calculations with different numbers of steps (for example,
4, 6 and 8 steps) are done, followed by extrapolation. See chapter 7 of GPD-3 for more details.

All the Command files written by MGE2GP specify Euler’s method. In most cases you could change
this to Gragg’s method by replacing the Command file statement

method = Euler ;

by

method = gragg ;

Usually Gragg’s method is more accurate than Euler’s method (for the same number of steps).

59

6. Larger Example Models

The example models discussed in sections 2 to 5 above are all pedagogical models which should be
useful for learning and teaching about MPSGE and GEMPACK.

We also intend that MGE2GP will be able to handle "serious" models – that is, models which can be
used for policy modelling.

The current version of MGE2GP can also handle at least one more serious model, namely the
MINIMAL model, as we describe in section 6.1 below. We plan to develop MGE2GP so that it can
handle other larger-scale example models such as ORANI-G and TERM.58

In order to handle such models, the TAB files written by MGE2GP must be able to handle zeros in the
database, and they must be able to handle exceptions and domain restrictions (see sections 2.6.1 and
10.5). The TAB files currently written by MGE2GP are already fairly good in these respects.

• Some of the "IF" conditions you see in Formulas and Equations in the TAB files for the example
models are there in order to handle zeros in the database.

• Some domain restrictions and exceptions can be handled by MGE2GP – see section 7.13.

6.1 The MINIMAL Model

This is a model developed by Mark Horridge.

MINIMAL is a slightly simplified CGE model designed by Mark Horridge. It contains a simplified
treatment of taxes, and no margins or multiproduction. The usual database for MINIMAL has only 7
sectors.

This model is described at

http://www.monash.edu.au/policy/minimal.htm

The files for the MGE version of this model are in zip file MINLMGE.ZIP which is available on the
MGE2GP web site (see section 1.1). For comparison with the standard MINIMAL model (as written by
Mark Horridge), we supply on the MGE2GP web site the zip file MINIMAL-MGE.ZIP. You should
download and unzip these files.

We supply (in MINLMGE.ZIP) the MGE file MINLMGE.MGE for this model and associated Header
Array file MINLMGE.HAR. We also supply 3 Command files for carrying out simulations which

• change government consumption (MINLMGE-GOV.CMF),

• change household consumption (MINLMGE-X3TOT.CMF), and

• change the real wage (MINLMGE-REALWAGE.CMF).

These are three of the standard simulations with the MINIMAL model.

For comparison we include the standard TAB file MINIMAL.TAB (as written by Mark Horridge),
associated Header Array file MINIMAL.HAR59, and three Command files for carrying out the
simulations with minimal which correspond to the simulations with the MINLMGE.MGE version of
the model. These three Command files are MINIMAL-GOV.CMF, MINIMAL-X3TOT.CMF and
MINIMAL-REALWAGE.CMF.

To work with the MINLMGE.MGE version, we suggest that you proceed as follows.

58 These models are documented at http://www.monash.edu.au/policy/oranig.htm and
http://www.monash.edu.au/policy/term.htm respectively.
59 The Header Array files MINIMAL.HAR and MINLMGE.HAR contain exactly the same data. We
have just changed the headers in MINLMGE.HAR to be what the program MGE2GP expects.

60

• Run the program MGE2GP to convert MINLMGE.MGE to MINLMGE.TAB, TMINLMGE.STI
and MINLMGEHSIM.CMF.

• Before running TABLO, add the statements in the supplied file MINLMGE-BOT.TAB to the
bottom of MINLMGE.TAB (as produced by MGE2GP). [Use TABmate and copying and pasting.]
The statements in MINLMGE-BOT.TAB transfer results for variables in MINLMGE.TAB (as
produced by MGE2GP) to results for variables with the names used in MINIMAL.TAB. This
makes comparison of simulation results between MINIMAL.TAB and the MGE version easier.60

• Run TABLO, taking inputs from Stored-input file TMINLMGE.STI.

• Carry out the homogeneity simulation by running GEMSIM, taking inputs from the Command file
MINLMGEHSIM.CMF. Check that prices increase by 1% and that quantities remain unchanged.

• Carry out the three example simulations by running GEMSIM taking inputs from the Command
files MINIMAL-GOV.CMF, MINIMAL-X3TOT.CMF and MINIMAL-REALWAGE.CMF. Look
at the simulation results.

To compare the results with those from the original MINIMAL model, you need to carry out the
simulations with it. You can do that via the following steps.

• Run TABLO, selecting TAB file MINIMAL.TAB and producing output for GEMSIM. [There is
no condensation necessary so you do not need to run from a Stored-input file.]

• Carry out the three simulations by running GEMSIM taking inputs from the Command files
MINIMAL-GOV.CMF, MINIMAL-X3TOT.CMF and MINIMAL-REALWAGE.CMF.

Then, for example, to compare the results for the GOV simulation, load the results in MINIMAL-
GOV.SL4 and MINLMGE-GOV.SL4 into ViewSOL (in that order) so that you have both sets of
results in ViewSOL at the same time. In the ViewSOL Choose which solution to view drop-down
box (the one which shows lets you switch between the different solutions loaded), select
1 MINIMAL-GOV. Then the contents page will show you the variables in MINIMAL.TAB. Look at
the results for the variables p1tot, x1tot and p1prim. These percentage change results are
available in both models. You should see very similar numbers. There are also some common variables
on the page of Macro results.

6.1.1 Noteworthy Features in MINLMGE.MGE

• The downward sloping export demands in MINIMAL (see Excerpt 8 in MINIMAL.TAB) are
implemented via the $constraint:e(o) equation in MINLMGE.MGE.

• The $constraint: equations are written to include so-called "shifters". See section 7.6.1 for
an explanation. In particular, these shifters make it easy to change closures in natural ways, as
described in section 7.6.1. For example, these equations make it possible to shock real wages
(letting employment adjust) or to shock real consumption (letting the balance of trade adjust) –
both simulations in the ORANI tradition but simulations which are not usually done with MPSGE
models.

6.1.2 Reversals of the Simulations

We supply Command files for reversing the three standard simulations with both the MINLMGE and
MINIMAL versions of this model. These Command files all have BACK in their names. In each case

60 For example, variable pd(o) in MINLMGE.TAB corresponds to variable p1tot(i) in
MINIMAL.TAB. You will see the equation

Equation E_p1tot (all,i,IND) p1tot(i) = pd(IndToS(i)) ;

in MINLMGE-BOT.TAB. This means that results from MINLMGE for variable pd(o) are also
reported as results for variable p1tot(i). Here IndToS is a mapping from the set IND in
MINIMAL.TAB to the set S (which is equal to the set O in MINLMGE.MGE).

61

you can check that the BACK simulation reverses the simulation results and that the updated data after
the reversal simulation is the same as the starting data. [Follow the methods in sections 5.2.3 and 5.2.4
above.]

6.1.3 Technical Change not in MINLMGE.MGE

The current version of MINLMGE.MGE does not allow for any technical change. In particular, the
variable a1prim(i) (All primary-factor augmenting technical change) in MINIMAL.TAB is not
available in the MINLMGE version of the MINIMAL model. We may rectify this in a later version of
MINLMGE.MGE.

62

7. Building Your Own Models

In this section we provide advice about writing down your own models in MPSGE format, assuming that
you intend to convert them to GEMPACK in order to carry out simulations. We also give advice about
preparing the data in a Header Array file.

Unlike the earlier parts of this paper (which are designed to be read in order), this section contains reference
material. You may need to jump between different subsections, depending on your needs.

7.1 Must the Starting Data Represent an Equilibrium?

When you use GEMPACK to solve a model,

you must start from data representing an equilibrium

(that is, a balanced data set) of the model. The simulation produces a second equilibrium, represented
by the updated data. The solution algorithms usually used by GEMPACK require this.61 When you
solve a model, the simulation results reported are changes or percentage changes from the pre-
simulation equilibrium, so you can think of the simulations as reporting perturbations from an initial
equilibrium.

This is why, in the TAB files written by MGE2GP, there are Assertions which check that the initial
data are balanced.62

Example. If you look in TWOBYTWO.TAB into the code for the $prod:x block, you will see the
following assertion.

Assertion (Initial)
 ! If this fails, the initial data is not balanced. !
 # Initial data. Costs = revenue for $prod:x #
 [R_X GE (1-BALTOLI)*C_X] AND [R_X LE (1+BALTOLI)*C_X] ;

This checks that revenue R_X in that sector is equal to costs C_X. [Because there can be rounding
when you add numbers on a computer, the complicated looking expressions here are simply a way of
saying that R_X=C_X up to some reasonable accuracy. In the code BALTOLI=0.0001 so the
assertion says that 0.9999*C_X <= R_X <= 1.0001*C_X.]

However, when using GAMS/MPSGE to solve models, the software does not demand an initial
equilibrium since a model may be posed based on technology and preferences, and these need not be
determined from a calibrated benchmark. Nonetheless, in most applications, data sets are balanced
because you usually want to start from an equilibrium.

7.2 Preparing Data in a Header Array File

You might use the various GEMPACK tools to prepare the data in this form initially. Alternatively, if
you have prepared the data in a GAMS form, you can use tools such as GAMS2HAR or GDX2HAR
[see http://www.monash.edu.au/policy/gp-gams.htm] to convert the data into a GEMPACK Header
Array file.

7.2.1 Data on the File

For every relevant name in the MGE file, the GEMPACK TAB file produced by MGE2GP expects to
find the pre-simulation (that is, benchmark) values at some header on the associated Header Array file.
For example, if you have

61 See section 7.8 of GPD-3 for details.
62 The are also Assertions which check that the data at the start of each step of a multi-step calculation
are also balanced – these are checks that the simulations are proceeding as expected.

63

 i:pd(o) q:interm(o,s) a:gov t:bti(o,s)

in a $prod: block, the TAB file expects to find data for the pre-simulation values of interm and
bti at different headers on the Header Array file. See section 7.2.3 below to find out what headers are
expected.

7.2.2 Sets on the File

For every set referred to in the MGE file, the GEMPACK TAB file produced by MGE2GP expects to
find the elements of this set at a header on the associated Header Array file. For example, if you have

 i:pc(goods) q:qcomin(goods,sectors)

in a $prod: block, the TAB file expects to find the elements of sets goods and sectors at
different headers in the associated Header Array file. See section 7.2.3 below to find out what headers
are expected.

7.2.3 Names of Headers

The program MGE2GP uses the following algorithm to work you the Header name where it expects to
find the values of a Coefficient or the elements of a Set.

• Omit all underscore "_" and "@" characters (if any).

• If the resulting name has 4 or fewer characters and that header has not already been used, use that.
[For example, expect values of qcom at header "QCOM".]

• Omit vowels (a,e,i,o,u) from the right-hand end of the resulting name until the resulting name has
4 or fewer characters (if so, use that if that header has not already been used) or until there are no
vowels remaining. [For example, expect elements of set FACTOR at header "FCTR" and expect
values of Coefficient FOODS at header "FODS".]

• Truncate the resulting name to 4 characters and use that header if it has not already been used. [For
example, expect values of Coefficient QGOODSIN at header "QGDS" if that header has not
already been used.]

• Otherwise, take the first 3 characters of the resulting name and try adding digits (0-9) at the end
until find a header name that has not been used. [For example, expect names of elements of set
FACTORS at header "FCT1".]

[We plan that a later version of MGE2GP will look at the Header Array file you have prepared and be
able to find the header at which a Coefficient values or the elements of a Set can be found. This will be
simpler for users who can then ignore the algorithm described above.]

7.2.4 Introduction to Header Array Files

Each array is held at a different "header". Headers are limited to 4 characters. Arrays on Header Array
files can hold real, integer or character data. See section 4.1 of GPD-1 for more details.

7.3 Why Use Expressions in q: Fields?

Experienced MPSGE users may be surprised that we encourage the use of expressions in q: fields
(and other fields) in many cases.

Example. Consider the $prod:w block in SJMGE.MGE.

$prod:w s:1.0
 o:pw q:(sum(good, hous(good)))
 i:pc(good) q:hous(good)

Since there is only a single output (commodity pw), the q: field value in the o:pw line
must be the SUM shown if the data is balanced.

64

Similarly, in the $prod:xcom(sect) block in SJMGE.MGE there are sums in the
o:pc(sect) line.

$prod:xcom(sect) s:1.0
 o:pc(sect) q:(sum(good, comin(good,sect)) + sum(fac, facin(fac,sect)))
 i:pc(good) q:comin(good,sect)
 i:pf(fac) q:facin(fac,sect)

Again, since there is only one output from the block, the q: field value in the
o:pc(sect) line must be the expression shown if the data is balanced.

An equally valid MPSGE representation of the Stylized Johansen model would have the two blocks
above written as

$prod:w s:1.0
 o:pw q:vw
 i:pc(good) q:hous(good)

$prod:xcom(sect) s:1.0
 o:pc(sect) q:com(sect)
 i:pc(good) q:comin(good,sect)
 i:pf(fac) q:facin(fac,sect)

This introduces two extra Coefficients vw and com(sect). In the GEMPACK implementation, the
values of these Coefficients will be read from the pre-simulation database. Also, after a simulation is
run, the updated values of these will be written to the updated data file.

We have provided this alternative representation (in file SJMG2.MGE) amongst the examples supplied
with MGE2GP. If you look at the associated Header Array file SJMG2.HAR, you will see the values of
vw and com at the relevant headers on that file.

The vw and com data held in SJMG2.HAR are redundant in the sense that they can be deduced from
other data on the file. At least, this is true if the data in SJMG2.HAR represent an equilibrium of the
model, which is always assumed when converting to GEMPACK (see section 7.1). That is the key
reason why we have suggested the use of expressions in q: (and other) fields.

• If you are prepared to hold redundant data on the HAR file, then you don’t need to write
expressions in such fields. [An example is SJMG2.MGE.]

• If you prefer not to hold redundant data on the HAR file, you need to write expressions in q:
(and other) fields in cases where the value can be deduced from the values in other fields
(assuming that the data are balanced – that is, come from an equilibrium of the model). [An
example is SJMGE.MGE.]

7.4 Arranging to Get All Relevant Data Updated

One of the important features of GEMPACK is that updated data is produced after every simulation.
Ideally this updated data file represents the state of the economy it has fully adjusted to the shocks. An
example is in section 5.2.1.

The updated data file only contains updated (that is, post-simulation) versions of data which is read
from a data file when the simulation is carried out.

Ideally all input data into a model should appear in the updated data.

For example, you may want to apply shocks in stages. Start from the initial data and apply one
group of shocks. Then start from the updated data from the first simulation and apply a second
group of shocks. Suppose that all data inputs to your model are updated in the updated data.
Then, if you combine the two sets of simulation results (changes and percentage changes), the
combined result will be what you would get if you applied the two groups of shocks in a
single simulation, starting from the original data. However, if some data inputs are not
updated, it is not at all clear what the second simulation is achieving. Indeed, the results from
it may be misleading.

MGE2GP checks whether all data in your model can be updated. If not, no updated data is produced
when you carry out simulations with the model.

65

The circumstances in which data in various fields in your MGE file can be updated are described in
detail in the subsections below. For example, no updated data will be produced

• if you have a number (rather than a name) in any field in your MGE file. [See section 7.4.1 for
details.]

• if you have a q: field consisting of a single name which is not of "full rank". [See section 7.4.2
for details and an explanation of "full rank".]

• in certain other cases which are described in sections 7.4.3 to 7.4.5 below.

Accordingly you should avoid these if you want to use the updated data. We give details in the
subsections below.63

Note that, even if your MGE file does not conform to the above advice, the simulation results (that is,
the changes and percentage changes, and the original and post-simulation levels results reported on the
Solution file and viewed via ViewSOL) are still correct. For example, although TWOBYTWO.MGE has
numbers rather than names in all relevant fields in the MGE file, the simulation results you see using
ViewSOL (see, for example section) are still correct. These results would not change if you modified
the MGE file to contain names rather than numbers.

7.4.1 Avoid Numbers in Fields

The TAB file written by MGE2GP expects to read from the Header Array file for the model data
corresponding to any name used in the MGE file. However, nothing is read from the Header Array file
when a number (rather than a name) is used in a field in the MGE file.

Example. Consider the following $prod: block.
$prod:x s:1
 o:px q:qx
 i:pl q:50
 i:pk q:qk
The corresponding TAB file will expect to read the values of qx and qk. [These will be
Coefficients in the TAB file.] But there is no Read statement corresponding to the q:50
field. [Instead there will be a Formula(Initial) which sets some Coefficient equal to 50.]

7.4.2 Use Names of Full Rank in q: Fields Which are Not Expressions

This section only applies to q: fields not containing an expression – for example,
 q:(sum,o,demand(o))
[An expression must begin with "(" and end with ")" – see section 10.2.]

It does apply to q: fields which contain a minus sign followed by a name – for example,
 q:-endl .

What we mean by "full rank" is best illustrated by an example.

Example 1. Consider the following $prod: block

$prod:xcom(sect) s:1.0
 o:pc(sect) q:com(sect)
 i:pc(good) q:comin(good,sect)
 i:pf(fac) q:facin(fac)

Look at the last line. Since there is no set sect in the q: field, this means that, in the pre-simulation
data, the different xcom sectors use the same quantities of factor inputs. Even though this may be true
in the pre-simulation data, it may not be true once shocks are applied. [For example, one sector may
contract and another expand. Then they will use different amounts of the factors.] The TAB file written

63 Note that t: fields never cause problems about updated data. This is because tax variables in the
TAB file have the same arguments as those in the MGE file – see section 3.2.7.

66

must allow for these to become different. Accordingly you would see in the TAB file a Levels Variable
QD_XCOM_PF declared to stand for the quantity of pf input into these sectors.

Variable(Levels, GE 0, Linear_Name=p_qd_xcom_pf)
 (All,sect_1,sect)(All,fac_1,fac) QD_XCOM_PF(sect_1,fac_1)
 # Quantity (level) in q: field of i:pf(fac) in $prod:xcom(sect) # ;

And you would find the following formula assigning the initial (that is, pre-simulation) values for this
variable:

Formula (Initial) (All,sect_1,sect)(All,fac_1,fac)
 QD_XCOM_PF(sect_1,fac_1) = FACIN(fac_1) ;

There would also be a Coefficient called FACIN declared. Its values will be read but they cannot be
updated since facin(fac) is not of full rank. So, if the updated data file was produced, the updated
data would not contain the updated FACIN values. Instead (and this would be really misleading), the
updated data file would contain the original (that is, the pre-simulation) values of FACIN. This would
mean that the data on the updated data file would probably not be a valid data set (it would not be
balanced) and so would not represent an equilibrium for the model.

This is why the updated data file is not produced when you carry out simulations starting from MGE
files like this.

For example, if you run MGE2GP to process a model which includes the $prod: block in Example
1 above, you will see the following warning:

Warning while Processing function $prod:xcom(sect)
Processing line beginning i:pf(fac)
Processing "q:facin(fac)"
 %% Warning. Message follows.
 "facin(fac)" will not be updated - better to add full rank
symbol here and to read it.
 [Hence no updated data will be produced by simulations.]
This occurred while translating to GEMPACK.
See the accompanying documentation for more information.

So, the moral is, if you are concerned about the validity and integrity of the updated data,

always use names of full rank

When you run the program MGE2GP, you may see warnings about names not being of full rank. Those
warnings relate to what we have described in this section.

Checking Full Rank

How do you tell if a name has full rank? You simply need to check if the entry in the relevant field
contains all the indices in the $prod: field and all indices in the o: or i: field at the start of the
relevant line in the $prod: block.

Example. Consider

$prod:y(s1,s2)
 i:pd(s2,o) q:x3(s1,o,s2)
 o:pd(s2,o) q:x4(o,s1)

The q:x3(s1,o,s2) is of full rank but the q:x4(o,s1) is not of full rank since index
s2 is not present.

7.4.3 When p: Fields Can Not Be Updated

A p: field is only needed if there are taxes on an o: or i: line.

• If a p: field contains a number, no updated data is produced (for the reasons explained in section
7.4.1). In particular, if there is no p: field on an o: or i: line containing taxes, then p:1 is
implied (see section 10.6.1), and so no updated data is produced.

67

• If a p: field contains a single symbol (for example, p:bpo(s)) then this p: field cannot be
updated if the symbol does not contain all arguments appearing in t: fields on the line. For
example, in
 i:pf(f) q:factor(f,s) p:bpf(f) a:gov t:btf(f,s)
the p: field does not contain the argument s occurring in t:btf(f,s). [The reason for
updated data not being produced in this case is similar to the reasons in section 7.4.2.]

7.4.4 When m: Fields Can Not Be Updated

An m: field is only needed if there are endogenous taxes (that is, an n: field) in an o: or i: line
(see section 10.6.1).

• If an m: field contains a number, no updated data is produced (for the reasons explained in
section 7.4.1). In particular, if there is no m: field in an o: or i: line containing an n: field,
then m:1 is implied (see section 10.6.1), and so no updated data is produced.

7.4.5 Other Cases When Fields Cannot Be Updated

Updated data is not produced

• if there is a q: field containing an expression [beginning with "(" and ending with ")"] in an e:
line which contains an r: field.

7.5 Use GAMS Syntax for Expressions and Equations in MGE Files

It is common to use expressions in some of the fields, especially q: fields (see section 7.3). In these
fields, you should use GAMS syntax (rather than GEMPACK syntax) for SUMs. For example

 q: (SUM(com,xhous(com))

[When MGE2GP writes the TAB file, this will be translated to the GEMPACK form, namely
SUM(com_1,COM, XHOUS(com_1)).]

GEMPACK experts will need to take care to use sets as indexes (for example, the set com in the
example above).

GAMS experts should note that, if they want to write down a sum over 2-tples, they should write the
expression as a double sum rather than using tuples since this is what MGE2GP can handle. For
example, use

SUM(s, SUM(t, x1(s,t)))

rather than

SUM((s,t), x1(s,t)) [not allowed]

You should also use GAMS syntax when you write $constraint: equations, as explained in
subsection 7.6 below.

You need to use GAMS syntax (rather than GEMPACK syntax) in the MGE file because

• MGE files can be used to model with GAMS (in which case, GAMS syntax has always been
required) or can be translated to GEMPACK. You should not have to change the file you may have
used with GAMS when you want to translate it to GEMPACK.

• you cannot reasonably be expected to guess what indexes MGE2GP will use when translating sets
to GEMPACK indexes. [For example, sometimes sum(com,xhous(com)) will be translated
to SUM(com_1,COM, XHOUS(com_1)) in the TAB file and sometimes it will be translated to
SUM(com_1@,COM, XHOUS(com_1@)) .]

68

7.6 Writing $constraint: Equations

You can write levels or linear equations here. If your MGE file is also to be used in conjunction with
GAMS/MPSGE, you will want to write the $constraint: equations as levels equations since
GAMS/MPSGE expects that.

• If you write a linear $constraint: equation, you must begin the equation with the qualifier
(linear). For example,
$constraint:epl
 (linear) pf("lab") = pu ;

• If you write a levels $constraint: equation, you do not put any qualifier before the equation,
and you should use GAMS syntax. For example,64

$constraint:xx
 gov =e= 0 ;

In either case, you should use GAMS syntax for SUMs.

If you write a levels equation, the program MGE2GP converts $commodities, $sectors and
$consumers to the appropriate levels forms used in the TAB file. ["_L" is added at the end of the
names of $commodities and $sectors and "VI_", which stands for "Value of Income" is
added before the names of $consumers.]

For example, the equation in

$constraint:xx
 gov =e= 0 ;

is written in the TAB file as

 Equation (Levels) VI_GOV = 0 ;

by MGE2GP.

Do not use GEMPACK quantifiers, for example "(all,f,fac)", when writing linear or levels
$constraint: equations. For example,

$constraint:rls
 (Linear) pf(fac) – px(fac) = 0 ;

$constraint:fs(fac)
 pf(fac) =e= px(fac) ;

[When MGE2GP writes the TAB file, the equations will be translated to the GEMPACK form. For
example, the latter example above (a levels equation) will be translated to
 Equation (levels) (all,fac_1,fac) pf_L(fac_1) = pc_L(fac_1) ;
MGE2GP adds the quantifiers and changes to levels names used in the TAB file if necessary – see
section 7.6.2 for details about name changes.]

7.6.1 Shifters in $constraint: Equations

In the ORANI spirit, we have made it easy for users to add so-called "shifters" to $constraint:
equations.

There are several examples in MINLMGE.MGE for the MINIMAL model (see section 6.1). We
describe the $constraint:epl equation in this context.

$constraint:epl
* With this constraint equation, employment level is free to adjust
* endogenously and real wage (PL/PC) is fixed (or exogenous).
* [Could shock realwage here.]
* (linear) pl - pc = realwage ;
 pl/pc =e= realwage ;

64 In GAMS syntax, use =e= between two sides of an equation.

69

Putting realwage by itself on the right-hand side of the above levels equation lets
MGE2GP recognise that this should be made into a "shifter" variable in the TAB file and
included as an exogenous variable in the standard closure in Command files for the model. For
example, if you want to increase the real wage (which is one of the standard simulations with
the MINIMAL model – see MINLMGE-REALWAGE.CMF and MINIMAL-
REALWAGE.CMF in section 6.1), you can do this simply by shocking the variable
realwage.

In general, if you put a single symbol on the left-hand side or the right-hand side of a levels
$constraint: equation, and provided that this symbol has the same arguments (indexes) as the
equation, MGE2GP recognises that this should be made into a shifter variable in the TAB file and
included as an exogenous variable in the standard closure in Command files.

Note that a possible closure change in such cases is to swap the shifter variable with the variable in the
$constraint: field. That turns off the $constraint: equation. This is also in the ORANI
tradition of having several different closures.

For example, in MINLMGE.TAB derived from MINLMGE.MGE, the standard closure is to have
realwage exogenous and epl endogenous. That is, wages are exogenous and employment adjusts.
However an alternative closure is to have employment exogenous and wages endogenous. You can
achieve this by adding the statement

swap realwage = epl ;

to the Command files for MINLMGE.TAB. [This statement sets realwage endogenous and epl
exogenous since the effect of a swap statement is to reverse the exogenous/endogenous settings of the
two variables – see section 5.2.3 of GPD-3.]

7.6.2 Variable Names in $constraint: Equations may be Changed by MGE2GP

When MGE2GP writes the TAB file, the names of variables in levels $constraint: equations
may be changed to the appropriate TAB file names.

• Central price and sector variables have _L added to their names.
For example, in
$constraint:fs(fac)
 pf(fac) =e= px(fac) ;
the equation is written in the TAB file as
 Equation (levels) (all,fac_1,fac) pf_L(fac_1) = pc_L(fac_1) ;

• Income variables have VI_ added at the start of their names.

• Names that represent quantities in the MGE file often represent values in the TAB file. These
names will be changed to the TAB file name that represents the relevant quantity.
For example, the $constraint:efx equation from MINLMGE.MGE
$constraint:efx
 efx / sum(o, e(o)*export(o)) =e= befx ;
is written as
 Formula & Equation E_efx
 BEFX = efx/SUM(o_1,o,e(o_1)*(-1.0)*UQS_RA_PD(o_1));
in the TAB file MINLMGE.TAB. The export(o) in the MGE file refers to the unrationed
quantity of exports. But export(o) represents the unrationed value of exports in the TAB file,
while
–UQS_RA_PD(o) represents the unrationed quantity of exports in the TAB file.

will be translated to the GEMPACK form. For example, the latter example above (a levels equation)
will be translated to
 Equation (levels) (all,fac_1,fac) pf_L(fac_1) = pc_L(fac_1) ;
MGE2GP adds the quantifiers and changes to levels names used in the TAB file if necessary.]

70

7.7 Where Possible, Do Not Rely on Set Aliases

This section is intended mainly for GAMS/MPSGE experts.

The program MGE2GP only reads the MPSGE specification of the model. This specification does not
include any GAMS Alias statements (which will appear in the .GMS file above the MPSGE part of
your .GMS file containing the MPSGE model).

The program MGE2GP has to make inferences about the sets from what it reads in the MGE file. For
example, it has to try to decide if two sets are in fact equal (that is, aliased in the GAMS sense) or if
one set is a subset of another set.

The program MGE2GP can do a better job of translating the MGE file if you make minimal reliance on
Aliases in the MGE file itself. So try to use just one symbol for each different set, especially in the
declaration blocks (that is, the $sectors, $commodities, $consumers and $auxiliary
sections). Also try to use the same sets in the first line of $prod: and $demand: blocks as were
used in the declaration of the corresponding $sector and $consumer respectively. Of course
you can use aliases in the other lines in $prod: and $demand: blocks.

Example. In OPEN.MGE (see section 2.2.3) you will see

$sectors:
 y(s) ! production
 a(s) ! aggregate supply
 e(s) ! export index
 m(s) ! import index

$commodities:
 pd(s) ! domestic price of commodity
 pa(s) ! price of commodity
 pf(f) ! price of primary factor
 pe(s) ! price of export
 pm(s) ! price of import

$prod:y(s) t:etrn(s) va:esub(s)
 o:pd(s) q:supply(s)
 o:pe(s) q:export(s)
 i:pa(o) q:interm(o,s)
 i:pf(f) q:factor(f,s) va:

• In the .GMS file we first wrote down to solve this model using GAMS/MPSGE, there was an
 Alias(s,o) ;
statement. Also many of the declarations were written down over the set o rather than the set
s.65 With that MGE file, MGE2GP had a hard time figuring out if s and o were equal sets
(since it does not read the Alias statement). So it makes life easier for MGE2GP if the set s
is used in all the declarations and also if the $prod:y(s) block uses the same set s that y
is declared over (rather than starting $prod:y(o) as it could in a .GMS file).

• Although the set o is intended to be the same as the set s, MGE2GP is only able to infer that
o is a subset of s (as you will see if you look near the start of the file OPEN.TAB produced
by MGE2GP).

7.8 Advice About Writing MPSGE Files for Conversion to GEMPACK

This summarises advice given elsewhere in this section.

• As far as possible, don’t use alias sets, especially in the declaration blocks. See section 7.7.

• Use names of full rank in fields in your MGE file. See section 7.4.2.

65 For example, e(o), pd(o) and pe(o).

71

• Use GAMS syntax in expressions and equations. See section 7.5.

• Use expressions in fields if you want to avoid carrying around redundant data on the HAR file. See
section 7.3.

• Use fairly short names in your MGE file if you want the TAB file names to be meaningful. See
section 7.11.2.

7.8.1 $report: Section is Ignored by MGE2GP

You should be aware that MGE2GP ignores any $report: section in your MGE file. This is
because GEMPACK Solution files already contain results for the large number of change and
percentage-change variables introduced in the model.

7.9 Walras Law and the Numeraire

Walras law says that one equation in a general equilibrium model is a consequence of all the other
equations in the model. It is usual to identify a suitable equation and to omit it from the equations in the
TAB file (that is, the equations actually solved).

The program MGE2GP looks to omit a suitable market clearing equation to omit in accordance with
Walras law, and it usually finds one, as explained below.

MGE2GP omits the market clearing equation for the first scalar commodity in the $commodities:
section. The corresponding commodity (actually, its price) is the numeraire in the usual homogeneity
simulation in the Command file written by MGE2GP.

For example, in bop.mge there are three scalar commodities, namely pu (price index for
utliity), pg (price of a government output unit) and pfx (real exchange rate). The first of
these in the $commodities: section is pu. Hence the market clearing equation for pu is
omitted in bop.tab and this variable pu is exogenous in bophsim.cmf and is shocked
by one percent. Notice also that the levels variable WALRASSLACK is added to the TAB file
and that its value is determined by the Formula & Equation

Formula & Equation E_c_walrasslack
 WALRASSLACK = IF[NOT[TQD_PU GT 0], PU_L - 1] +
 IF[TQD_PU GT 0, TQD_PU - TQS_PU] ;

The market clearing equation for pg is

Equation (Levels) E_pg
 # Market clearing equation for commodity pg #
 IF[NOT[TQD_PG GT 0], PG_L - 1] +
 IF[TQD_PG GT 0,
 TQD_PG - TQS_PG] = 0 ;

As you can see, it is somewhat arbitrary whether pu or pg (or pfx) is selected as the
numeraire. You can change between them (without changing the equation omitted). When you
change numeraire, all quantity percent-change results remain unchanged (fortunately). All that
happens is that percent-change results for prices and dollar values change to reflect the
different price being held constant.66

66 Suppose that you carry out two simulations with model bop which differ only in the choice of
numeraire. Suppose that pu is the numeriare in the first simulation, and suppose that, amongst of the
first simulation are: pg=1.1, pfx=0.2 and y("s1")=2.3 (where s1 is the first sector and y is the
percentage change in its activity level). Of course the simulation result for pu is zero since it is held
fixed. What would the corresponding simulation results be if pg were taken as the numeraire. Well,
since prices are now reported relative to pg, the results would be (approximately) pg=0 (it is held
fixed), pu=-1.1 (still 1.1% below pg), pfx=-0.9 (still 0.9% below pg) and y("s1")=2.3 (unchanged). If
you find this surprising, try it our with any simulation with model bop.

72

However, if there is no scalar commodity in the $commodities: section, MGE2GP produces the
TAB and Command files but ends with a warning that no equation has been left out to satisfy Walras
law. It is your job to identify a suitable equation and to omit it. You will also need to add the
corresponding price as an exogenous variable in the Command file and you will need to shock that
variable if you wish to carry out the usual homogeneity simulation.

For example, we provide a file jointh.mge in which there are several households and no
scalar commodity. The natural equation to omit to satisfy Walras law is the market clearing
equation for one household. The market clearing equation for pu(h) (price index for utility)
is

Equation (Levels) E_pu
 # Market clearing equation for commodity pu #
 (All,h_1,h)
 IF[NOT[TQD_PU(h_1) GT 0], PU_L(h_1) - 1] +
 IF[TQD_PU(h_1) GT 0,
 TQD_PU(h_1) - TQS_PU(h_1)] = 0 ;

In order to identify one of these equations to omit, you need to pick one of the elements of the
set H of households and then write down only the market clearing equations for the remaining
households. You could to that with the following statements

Set House1 (h1) # The first household # ;
Subset House1 is Subset of H ;
Set RestHouse = H – House1 ; ! Complement set !
Equation (Levels) E_pu
 # Market clearing equation for commodity pu #
 (All,h_1,RestHouse)
 IF[NOT[TQD_PU(h_1) GT 0], PU_L(h_1) - 1] +
 IF[TQD_PU(h_1) GT 0,
 TQD_PU(h_1) - TQS_PU(h_1)] = 0 ;

[This assumes that "h1" is the name of the first element of the set H. Notice that you write
down the market clearing equation for pu over the set RestHouse, not the whole set H.]67

7.9.1 Always Check the Result for WALRASSLACK

Whenever you look at simulation results via ViewSOL, you should always check that

the result for c_WALRASSLACK is approximately zero.

If not, something has gone wrong.

7.10 The Equations and the TAB File

In section 3.2 above, we introduced the equations underlying an MPSGE model. You saw how the
TAB file is arranged and looked at some of the equations for the TWOBYTWO.TAB file.

The general arrangement of the TAB files written by MGE2GP is always as indicated there. First come
statements declaring the variables in the $sectors:, $commodities: and $consumers:
parts of the MGE file. Then come the equations and other statements for each of the $prod: and
$demand: blocks in the MGE file. Finally there are the market clearing equations.

67 If you want to add WALRASSLACK to check the omitted equation you could add the lines
Variable (Levels, Change) WALRASSLACK ;
Equation (Levels) E_c_WALRASSLACK
 # Check of omitted market for household h1 #
 WALRASSLACK = IF[NOT[TQD_PU("h1") GT 0], PU_L("h1") - 1] +
 IF[TQD_PU("h1") GT 0, TQD_PU("h1") - TQS_PU("h1")] ;
Here use the element "h1" in place of the index.

73

In section 3.2 you looked at some of the equations in TWOBYTWO.TAB. The equations and other
statements in TWOBYTWO.TAB are especially easy to read (even if you are not used to GEMPACK)
since all variables are scalars. When there are sets and vector and matrix variables, the equations are
similar, but have arguments to indicate the vector and matrix nature of the equations.

Example. Consider SJMGE.TAB written from SJMGE.MGE by MGE2GP. Open this file
SJMGE.TAB in TABmate. You should see the different $prod: and $demand: blocks
in the TAB file.

Have a look in the code for the $prod:xcom(sect) part of the MGE file. You can see
the CES demand for factors (labor and capital) is written as

Equation (Linear) E_p_qfacin
 (All,fac_1,fac)(All,sect_1,sect) p_qfacin(fac_1,sect_1) =
 xcom(sect_1) - 1.0 * [pf(fac_1) - mc_xcom(sect_1)] ;

This is a linearized equation, as the qualifier (Linear) indicates. The name of this equation
block is E_p_qfacin. The so-called quantifier (All,fac_1,fac) indicates that there is one
equation for each different element fac_1 in the set fac. These quantifiers are required as
part of the syntax in a TAB file.

• GAMS users will be surprised by the indexes fac_1 and sect_1 in this statement.
They would expect something more like
 p_qfacin(fac,sect) =
 xcom(sect) - 1.0 * [pf(fac) - mc_xcom(sect)] ;

• GEMPACK users may also be surprised by the names fac_1 and sect_1 of these
indexes. In a hand-written GEMPACK TAB file you might expect to see "f" and "s" used
instead. The program MGE2GP often adds "_1" to the name of the set to produce an
index name.

The equation calculating the total supply of commodity pf is written as

Formula & Equation E_TQS_PF
 # Total quantity of supply for commodity pf #
 (All,fac_1@,fac) TQS_PF(fac_1@) =
 IF[ENDOW(fac_1@) GT 0,68 ENDOW(fac_1@)] ;

As you would expect, this just says that the total supply for each factor fac_1@ is equal to
ENDOW(fac_1@) (which is the quantity in the q: field in the e:pf(fac) line in the
$demand:y block). Both GAMS and GEMPACK users will probably be surprised to see the
odd-looking index fac_1@ used by MGE2GP in this equation.69 You will also see this sort
of index used in other supply and demand equations in SJMGE.TAB.70

7.11 Technical Details about the TAB File Written

7.11.1 Editing TAB and Command File

Editing the Command File

You will certainly need to edit the Command file to change the shocks and verbal description if you want to
carry out other simulations besides the homogeneity simulation. You may need to modify the closure
and/or solution method.

68 The "IF" expression "IF[ENDOW(fac_1@) GT 0," is because q: fields may contain negative
endowments – see section 3.2.4.
69 In TAB files, names must begin with a letter. They can contain other letters (a-z), digits (0-9) and the
two characters "_" [underscore] and "@". See section 4.2.1 of GPD-2 for details.
70 If you look at the equation for total demand of commodity pa in OPEN.TAB, you will see that the
both the indexes s_1@ and s_1 are used.

74

Editing the TAB File

You may need to make small changes to the TAB file produced by the program MGE2GP.

• You may need to modify the Headers referred to so that the headers in the Read statements in your
TAB file match the headers on MODEL.HAR.

• If MGE2GP cannot identify an equation to omit to satisfy Walras law, you may need to edit the
TAB file. See section 7.9 for details.

• If your $constraint: equations are not translated well by MGE2GP (see section 7.6), you
may need to edit them on the TAB file.

7.11.2 Names of the Variables and Coefficients

As you have seen in section 3.2, MGE2GP tries to make up names for Variables and Coefficients that
make it clear what block and line they come from. For example, look at the names QD_X_PL in
TWOBYTWO.TAB and TOVYPDGOV in TAXOUT.TAB.

Of course these names become too long if the names used in the MGE file are long. If that happens, the
program MGE2GP replaces the last 4 or so characters in the name by digits in order to satisfy the limits
on the length of names of Coefficients and Variables in TAB files.

For example, suppose that you change y(s) to prod(s) and change pd(o) to
pdom(o) in TAXOUT.MGE. Then, if the general pattern were followed, the name
TOVYPDGOV would become TOVPRODPDOMGOV which is too long, so MGE2GP instead
uses the name TOVPRODP0001.

7.11.3 Sets

At present, for every set referred to in the MGE file, the GEMPACK TAB file produced by MGE2GP
expects to find the elements of this set at a header on the associated Header Array file. See section
7.2.2.

7.11.4 Subsets

MGE2GP infers subset statements from the syntax and semantic rules for MPSGE files (see section
10). These inferences are made as follows.

• Suppose that the $sectors: section contains
 a(s) ! aggregate supply
and that there is a $prod: block beginning $prod:a(o). Then the syntax rule that each
sector must be defined in just one $prod: block (see section 10.1) implies that the sets S and
O must be equal sets. Hence MGE2GP adds the statements
Subset O is Subset of S ;
Subset S is Subset of O ;
to the TAB file.

• Suppose that the $consumers: section contains
 ra(h) ! representative agent income
and that there is a $demand: block beginning $demand:ra(g). Then the syntax rule that
each consumer must be defined in just one $demand: block (see section 10.1) implies that the
sets H and G must be equal sets. Hence MGE2GP adds the statements
Subset G is Subset of H ;
Subset H is Subset of G ;
to the TAB file.

• Suppose that the $commodities: section contains
 pc(sect) ! price of commodity sect
and that there is a $prod: block containing the line
 i:pc(good) q:qcomin(good,sect)

75

Then the set GOOD must be a subset of the set SECT. Hence MGE2GP adds the statement
Subset GOOD is Subset of SECT ;
to the TAB file. [Similarly for other o: lines in a $prod: block or for e: and d: lines in a
$demand: block.]

7.11.5 Sets over which Sector and Consumer Variables are Declared

Usually the TAB file Variables associated with the $sectors: and $consumers: parts of the
MGE file are declared with arguments ranging over the same sets as in that part of the MGE file.
However, different sets may be used in some cases.

• Suppose that the $sectors: section contains
 a(s) ! aggregate supply
Normally MGE2GP will declare a to be a Variable ranging over the set S. But suppose that the
$prod: for variable a begins $prod:a(o). Then the syntax rules imply that the sets S and O
must be equal sets (see section 7.11.4). MGE2GP declares a to be a Variable ranging over the set
O.
Variable (all,o_1,o) a(o_1)
 # aggregate supply (%-change) ;
in the TAB file. [The choice of "O" rather than "S" is made for technical reasons.]

• Suppose that the $consumers: section contains
 ra(h) ! representative agent income
Normally MGE2GP will declare ra to be a Variable ranging over the set H. But suppose that the
$demand: block for ra begins $demand:ra(g). Then the syntax rules imply that the sets
H and G must be equal sets (see section 7.11.4). MGE2GP declares ra to be a Variable ranging
over the set G.
Variable (all,g_1,g) ra(g_1)
 # representative agent income (%-change) # ;
in the TAB file. [The choice of "G" rather than "H" is made for technical reasons.]

7.11.6 The TAB File is a Mixed Levels/Linear File

As you have seen from the earlier examples (see sections 3.2 and 4.7), the TAB file written by
MGE2GP contains many explicitly levels variables and equations. It turned out to be most convenient
and natural to write the accounting relations in levels and to write the behaviour (the CES demand and
supply functions) as linearized equations. The TAB file written by MGE2GP is a good example of the
strategy suggested in Harrison et al (1994).

There are linear equations in the TAB file are those involving the elasticities in $prod: blocks.

For example, consider the following $prod: block in joint.mge.
$prod:u s:esubc
 o:pu q:(sum(o, demand(o)))
 i:pd(o) q:demand(o)
The only linear equations associated with this block are
Equation (Linear) E_p_qs_u_pu
 p_qs_u_pu = u + 0 * [pu - mr_u] ;
Equation (Linear) E_p_demand
 (All,o_1,o) p_demand(o_1) = u - ESUBC * [pd(o_1) - mc_u] ;
[These involve the elasticities ESUBC (input substitution) and 0 (output substitution).]

The equations determining the percentage changes in marginal revenue and marginal costs associated
with each $prod: block are also written in the TAB file as linear equations, as is the zero profit
condition in each $prod: block.

The market clearing equations and the equations calculating total supply and demand for each
commodity are levels equations.

For example, several of these equations from twobytwo.tab are set out in section 3.2.4.

76

Links between levels and linear variables are often made using the Linear_Var= and
Linear_Name= Variable qualifiers.71

For example, you can see several of these in open.tab as written by MGE2GP.

7.11.7 Assertions

There are Assertions which check that the pre-simulation (that is, benchmark) values read in are a solution
of the model (or, alternatively, that the pre-simulation data is balanced). The current GEMPACK
implementation of an MGE file (as produced by the program MGE2GP) assumes that you are starting from
a balanced database – see section 7.1. If the initial data is not balanced, this Assertion will fail and the
simulation will not run.

There are also Assertions which check that the data remain balanced (to within some sensible tolerance) at
the start of each step of a multi-step simulation. If one of these Assertions fails, it usually means that the
solution being produced is not very accurate. The remedy is to increase the accuracy. You can do that by
specifying more subintervals in the Command file.

For example, have a look at the Assertions that "costs = revenue for $prod:xcom" in
SJMGE.TAB. Notice that the checks of the pre-simulation data are Assertion(Initial)s while the
checks at the start of each step are Assertion(Always) since they are done on each step.

7.12 Restrictions on MGE Files

7.12.1 d: Fields in a $demand: Block

The program MGE2GP does not support more than a single d: field in a single $demand block.
Formally, consumers may only demand a single commodity. Utility functions must be mapped onto
the $prod block for the demanded goods. A d: record in a $demand block has a single field – no
q: or p: fields are permitted.

This restriction is part of the new syntax rules for MPSGE (see section 10.1), so the program MGE2GP
will always impose this restriction.

7.12.2 Restrictions on Names in MGE Files

The program MGE2GP imposes the following restrictions on the names used in the MGE file.

[Details about the maximum length of names in GEMPACK, and the characters allowed in names in
GEMPACK TAB files, can be found in section 4.2.1 of GPD-2.]

• Names used for market prices in the $commodities section, and names used in the
$sectors section, are limited to 10 characters. This is because the program MGE2GP adds
"_L" at the end of these names and creates a GEMPACK Coefficient (and Levels Variable) from
the resulting name. [Coefficient names in GEMPACK are limited to 12 characters.]

• Names used in the $consumers section are limited to 9 characters. This is because the program
MGE2GP adds "VI_" at the start of these names and creates a GEMPACK Coefficient (and Levels
Variable) from the resulting name.

• Names of sets are limited to 12 characters since set names in GEMPACK have this limit.

• Names of set elements (they appear inside double quotes "" in the MPSGE file) are limited to 12
characters since set elements in GEMPACK have this limit.

71 These qualifiers were introduced in Release 8.0 (October 2002) of GEMPACK. See section 2.2.2 of
GPD-2.

77

• Names of what GAMS calls Parameters appearing in the various fields (for example, in q: and t:
fields) are limited to 12 characters since these will be used as names of GEMPACK Coefficients
(which are limited to 12 characters).

• All names in the MPSGE file which are used as GEMPACK names must begin with a letter and
contain only letters (A to Z, a to z), digits (0 to 9), underscores "_" or the character "@".

• Certain names are restricted in GEMPACK and so cannot be used as the names of sets or
Coefficients. For example, SUM and EQ should not be used in this way. See section 4.2 of GPD-2
for a list of GEMPACK reserved words. If you use one of these restricted names in your MGE file,
you will not find out about the error until you run the GEMPACK program TABLO to check the
file. [The program MGE2GP makes no attempt to screen for GEMPACK reserved words.]

7.13 MPSGE Features Net Yet Supported

Some advanced MPSGE features are not supported at present by the program MGE2GP when it
converts to GEMPACK. These include the following.

• At present domain restrictions (see section 10.5) are only allowed in declarations of
$commodities or $sectors, but are not handled in declarations of $consumers.
For example,
 pe(s)$export(s) ! price of export
is allowed in the $commodities section.

• At present domain restrictions (via $ exceptions – see sections 2.6.1 and 10.5) are only allowed
 on $prod: blocks,
 on o: or i: fields in $prod: blocks.
Exceptions in other places are not handled and will probably result in an error.
For example,
$prod:e(s)$export(s)
 i:pe(s)$x1(s) q:export(s)
are allowed.

• The spanning operator # (see section 2.6.3) is not allowed.

• Sets of nests labelled with text labels – for example, s.tl (see section 2.6.2) – are not allowed.

If the program encounters such features in the MPSGE file, it will stop with a fatal error.

We plan to develop MGE2GP over the next year or so in order to gradually eliminate some of these
restrictions.

7.14 Known Limitations on the Current Version of MGE2GP

We are aware of some unfortunate limitations on the current version of MGE2GP. We expect that others
will come to light when the program is used more widely. We will be grateful if users alert us when they
find something in this category (see section 3.3).

We apologise for these limitations. We want to at least be able to warn users about them. We also hope to
fix them in future versions of MGE2GP.

Limitations we know about at present are:

• When deciding whether to produce updated data, MGE2GP should check if each coefficient in the
MGE file occurs in at least one position from which it can be updated. [A coefficient can be updated if
it occurs by itself or with just a negative sign in front of it in any "exogenous" field (for example, a t:
field) or with the appropriate rank in any "endogenous" field (for example, q: and p: fields are
"endogenous" fields).]

• When recognising one side of a $constraint: equation as a shifter, MGE2GP should check that
this symbol contains every equation index exactly once (since, otherwise, the Formula part of the
Formula & Equation written in the TAB file by MGE2GP will not be valid).

78

• Some MGE files lead to TAB files which have redundant equations. For example, the current version
of MINLMGE.MGE (see section 6.1) contains the following two lines in the $demand:ra block.
 e:pj q:(-invest)
 e:pg q:(-govexp)
If the brackets were omitted in either of the q: fields, the TAB file written by MGE2GP would have
redundant equations. [This is why we have put the brackets in.]

• The syntax checking of expressions in the MGE file (see, for example, section 7.5) is not very robust.
It will usually work ok if correct syntax is used in the MGE file. But it does not have good error
trapping or reporting in the case of syntax errors.

• The translation of GAMS-like expressions, especially those in levels $constraint: equations (see
section 7.6), to GEMPACK is limited. While MGE2GP can do simple translations, its knowledge in
this area is at present limited. The translation may fail in complicated cases.

7.15 Likely Future Changes to MGE2GP

We have identified some changes to MGE2GP which would, we think, make it easier to use. We plan
to make these changes over the next few months. We welcome comments and suggestions from users
about these and other similar matters.

7.15.1 MGE2GP Could Know the Contents of the HAR File

At present MGE2GP knows nothing about the headers on the associated HAR file, or about the names
of the Coefficients whose values are normally read from these headers. We are planning to let
MGE2GP look at the HAR file (as well as the MGE file) and to use its knowledge of the headers and
Coefficients there to

• put the actual headers on the file in the relevant Read statements in the TAB file (rather than
having to use some rules such as those set out in section).

• check the headers at which to find the elements of the various sets.

7.15.2 Possible New Rule for Reading Set Elements from the HAR File

We are wondering about introducing a new rule, as follows, into the MGE2GP code.

• Any set in the declaration part of the MGE file must have its elements on the HAR file.

• For other sets occurring in the definition part of the file, if we can infer that the set is equal to a set
in the declaration part, do not read its elements from HAR file, instead put set equality statement.

• For other sets in the definition part, read their elements from the HAR file.

79

8. Future Work

Our translation of the MPSGE language to GEMPACK is incomplete. There are a number of important
MPSGE features which are currently not supported by MGE2GP – see section 7.13.

During the next year or so, we plan to gradually extend MGE2GP so that it can handle more and more
of these features. As part of this process we will implement versions of several standard GEMPACK
models using the MPSGE formulation. We hope that these models will include ORANI-G and TERM.
We may try to teach MGE2GP to write explicit Complementarity statements so that the output TAB
files can handle cases in which activities are driven to zero.

We plan to use MGE2GP in teaching and also for model and software comparison. We hope that others
may do this also.

Over the much longer term, we expect that MPSGE might provide a starting point for the development
of an even more effective non-algebraic languages for applied general equilibrium models. It would,
for example, be intriguing to implement a Windows-based expert system to assist in model formulation
in the same way that TABmate and AnalyseGE facilitate the analysis of operational models.

80

9. References

Brooke, T., D. Kendrick and A. Meeraus (1988), GAMS: A User’s Guide, The Scientific Press,
Redwood City, California.

Brooke, T., D. Kendrick and A. Meeraus (1998), GAMS: A User’s Guide, GAMS Development
 Corporation, Washington.

Dixon, P.B., B.R. Parmenter, A.A. Powell and P.J. Wilcoxen (1992), Notes and Problems
in Applied General Equilibrium Economics, North-Holland, Amsterdam.

Harrison, W.J., K.R. Pearson, A.A. Powell and E.J. Small (1994), ’Solving Applied General
Equilibrium Models Represented as a Mixture of Linearised and Levels Equations’,
Computational Economics, vol. 7, pp. 203-223.
[A preliminary version was Impact Preliminary Working Paper No. IP-61, Monash
University, Clayton, September 1993, pp. 20.]

Hertel, T.W., J.M. Horridge and K.R. Pearson (1992), ’Mending the Family Tree: A Reconciliation
of the Linearised and Levels Schools of AGE Modelling’, Economic Modelling, vol.9,
pp.385-407. [A preliminary version was Impact Preliminary Working Paper No. IP-54,
Melbourne (June 1991), pp.45.]

Rutherford, T. F. (1985), 'MPS/GE user’s guide’, Department of Operations Research,
Stanford University.

Rutherford, T. F. (1987), 'Applied general equilibrium modeling’, PhD dissertation, Department
of Operations Research, Stanford University.

Rutherford, T. F. (1995), 'Extensions of {GAMS} for complementarity problems arising in applied
economics', Journal of Economic Dynamics and Control, pp. 1299-1324.

Rutherford, T. F. (1999), 'Applied General Equilibrium Modeling with MPSGE as a GAMS
Subsystem: An Overview of the Modeling Framework and Syntax', Computational
Economics, 14, pp. 1-46.

9.1 GEMPACK Documentation

Harrison, W.J. and K.R. Pearson (2002), An Introduction to GEMPACK, GEMPACK
Document No. 1 [GPD-1], Monash University, Clayton, Sixth edition, October 2002,
pp.207+9.

Harrison, W.J. and K.R.Pearson (2002), TABLO Reference, GEMPACK Document No. 2 [GPD-2]
Monash University, Clayton, Fourth edition, October 2002, pp.191+10.

Harrison, W.J. and K.R.Pearson (2002), Simulation Reference: GEMSIM, TABLO-generated
Programs and SAGEM, GEMPACK Document No. 3 [GPD-3], Monash University,
Clayton, Second edition, October 2002, pp.262+12.

Harrison, W.J. and K.R.Pearson (2002), Useful GEMPACK Programs, GEMPACK Document No. 4
 [GPD-4] Monash University, Clayton, Second edition, October 2002, pp.138+10.

Harrison, W.J. and K.R. Pearson (2002), Installing and Using the Source-Code Version of
GEMPACK on Windows PCs with Lahey Fortran, GEMPACK Document
No. 6 [GPD-6], Monash University, Clayton, 11th edition, October 2002, pp.39+7.

Harrison, W.J. and K.R. Pearson (2002), Installing and Using the Executable-Image
 Version of GEMPACK on Windows PCs, GEMPACK Document No. 7 [GPD-7],
Monash University, Clayton, 8th edition, October 2002, pp.33+6.

Harrison, W.J. and K.R. Pearson (2002), Getting Started with GEMPACK: Hands-on Examples,
GEMPACK Document No. 8 [GPD-8], Monash University, Clayton, Third edition,
October 2002, pp.110+8.

81

10. Appendix 1 – Syntax Rules for MPSGE Files

These are the syntax and semantic rules for the current version (Version 2, May 2004) of MPSGE files.

10.1 New Restrictions

The syntax and semantic rules are as laid out in Rutherford (1999), but with the following restrictions:

• Each sector must be defined in just one $prod: block.

• Each consumer must be defined in just one $demand: block.

• The declared domain for sectors must exactly match the domain of the associated $prod:
blocks.

• The declared domain for consumers must exactly match the domain of the associated $demand:
block.

• A d: field within a $demand: block is now interpreted as a pointer to the consumers
associated consumption good. Each $demand: block must contain exactly one d: field, and
that must be the sole field in the record – q: and p: fields are not permitted.

10.2 Basic Rules of Syntax

The following rules apply the statements which define an MPSGE model, independent of whether the
model is solved in GAMS or GEMPACK.

All input is free format (spaces and tabs are ignored), except for keywords which must be preceded by
a "$" appearing in column 1.

Input is organized into records which may span one or more liens. Continuation lines which are
indicated by a "+" in column 1.

Text is not case sensitive.

Numeric fields may be specified as computed values using expressions involving GAMS syntax based
on parameters/coefficients or constants. Fields based on computed values must be enclosed in
parentheses.

10.3 MPSGE Section Heading Keywords

There are nine MPSGE keywords which appear in an MPSGE model declaration. These are

• $MODEL: modelID

This statement assigns an identifier to the present model. This must be the first statement within
the MGE} file. All records appearing prior to the $MODEL keyword within the MGE file are
treated as comments.

modelID must be both a legitimate model identifier and a valid file name. This name is used to
form modelID.GEN.

• $SECTORS:, $COMMODITIES:, $AUXILIARY:, $CONSUMERS:

These four keywords define the variables which are used to define the MPSGE model. Entries in
these blocks share the same syntax.

• $AUXILIARY:

The $AUXILIARY keyword is only used in models with side constraints and endogenous taxes
or rationed endowments.

• $PROD:sector

82

This statement indicates the start of a set of records which define technology and taxes for a
particular activity.

• $DEMAND:consumer

This statement indicates the start of a set of records which define initial endowments and
preferences for consumers in the model.

• $CONSTRAINT:auxiliary

This statement specifies the equilibrium condition which is to be associated with a particular
auxiliary variable. Equilibrium conditions are written following the conventional rules for
expressing equations in an algebraic form. An auxiliary constraint may reference variables
corresponding to commodity prices, production activity levels, consumer income levels or report
variables.

10.4 Variable Declarations

MPSGE requires that variables be declared according to their specific role in a model. The four
MPSGE keywords $SECTORS:, $COMMODITIES:, $CONSUMERS: and $AUXILIARY:
therefore refer to the four different types of unknowns which may appear in a general equilibrium
model.

When variables are defined according to their classification the compiler is then able to verify that
when a variable appears within a function declaration it is properly referenced.

Here is a typical declaration block, one that refers to three classes of production activities in a given
model:

$SECTORS:
 Y(R,T) ! Output in region R in period T
 K(T) ! "Aggregate capital stock, period T"
 I0 ! Base year investment

In the MPSGE syntax trailing comments (signified by "!") are interpreted as variable descriptors which
subsequently appear in the solution listing. When a variable descriptor contains a punctuation symbol
such as ",", it is required to enclosed in quotes.

10.5 Domain Restriction

MPSGE is designed so that all and only those variables which are declared are actually employed in a
particular model. This form of "explicit declaration" helps to catch nuisance bugs in large-dimensional
datasets.

The explicit declaration feature in MPSGE means that "wildcard declarations", such as X(*,*,*) are
not permitted. It also means that some care must be exercised when a database includes "missing
goods". Consider, for example, a model in which g is the set of goods in the underlying database, and
P(g) is the associated vector of prices for these commodities. If a subset of the goods are missing
from the database, then the declaration of P(g) must be restricted to those goods which are actually
appear in the model. If y0(g) is a vector in which a value of zero indicates that the associated good is
not in the dataset. Appropriate declaration for the price vector could then be:

$COMMODITIES:
 P(g)$y0(g) ! Commodity price vector

Detailed cross-checking can be somewhat annoying for users accustomed to the conventional algebraic
syntax in which the declared domain of a variable may include many more scalar elements than are
actually used in the model.

In order to simplify the declaration of "irregular domains" for variables in MPSGE, the declaration
syntax accommodates the conditional operator "$".

To illustrate how this might work in a more complicated situation, suppose that a dynamic, multi-
sectoral, multi-regional model accounts for the production of good i in region r and time period t with

83

X(i,r,t). Suppose that base year production levels are given by x0(i,r), and suppose,
furthermore, that the model includes an upper bound on production in later periods given by
u(i,r,t).

We would then only want to declare X(i,r,t) when both x0(i,r) and u(i,r,t) are nonzero.
The MPSGE declaration to do this could be:

$SECTORS:
 X(i,r,t)$(min(x0(i,r),u(i,r,t)) > 0) ! Production levels

The computed conditional ("$()") is handy because it avoids the need to introduce any additional
symbols into the program. If, however, the same conditional restriction appears at several points in a
model it may be helpful to define a set with which to control declarations for several variables.

Using a coefficient array, the previous example could be written:

$SECTORS:
 X(i,r,t)$IX(i,r,t) ! Production levels
 ...

$COMMODITIES:
 PX(i,r,t)$IX(i,r,t) ! Output prices
 RK(i,r,t)$IX(i,r,t) ! Capital returns
 ...

10.6 Function Declarations

A general equilibrium model is based on technology, preferences, policy instruments (most notably tax
rates) and primary factor endowments. Technology and policy instruments are described in $PROD:
blocks. Preferences and primary factor endowments are described in $DEMAND: blocks.

10.6.1 $PROD Block Syntax

Most of the power and subtleties of the MPSGE framework for applied general equilibrium analysis
centers on the $PROD tables. The information conveyed in a $PROD block includes which is
characterized:

• Reference quantities for inputs and outputs.

• Reference producer prices of inputs and outputs.

• Exogenous taxes applied to inputs and outputs.

• Endogenous taxes applied to inputs and outputs.

The nested constant elasticity of substitution (CES) / constant elasticity of transformation (CET)
elasticity structure at the reference point.

All records in a $PROD block must begin with either an

• I: or O: record. The recognized labels in these records within a $PROD block include:

• Q: Reference quantity. Default value is 1. When specified, it must be the second field,
immediately following I: or O:.

• P: Reference price. The default value of the reference price is 1.

• A: Tax revenue agent. This field must be followed by a consumer name.

• T: Tax rate field identifier. (More than one tax may apply to a single entry.)

• N: Endogenous tax. This label must be followed by the name of an auxiliary variable.

• M: Exogenous tax multiplier. The ad valorem tax rate is the product of the value of the
endogenous tax (as in the N: field) and this multiplier. If the M: field is not present in a line
containing an N: field, M:1 is assumed.

84

• va:, kle:, etc. Nesting assignments referencing identifiers introduced in the $PROD record.
Only one such label may be applied at a time, although several nesting assignemnts may be
included on a given line when exception operators identify only a single nest assignment to be
included.

A given structure of nest and subnest elasticities corresponds to a particular set of own- and pairwise
elasticities and a specific second-order approximation to the Jacobian matrix at the benchmark point.

10.6.2 A Simple $PROD Block

Here is a typical production function, one in which factors of production from each region r are
combine in a Cobb-Douglas function to produce output:

$PROD:Y(r) s:1
O:P(r) Q:y0(r)
I:W(f,r) Q:x0(f,r) P:w0(f,r)

The price variables which appear in this function are P and W (both declared as $COMMODITIES:).
The activity variable in the function is Y, a variable which must have been declared in $SECTORS:.
Both f and r which appear in this function are sets, and y0, x0 and w0 must have been declared
previously in the program as parameters.

This $PROD block characterizes a Cobb-Douglas production function in which the elasticity of
substitution between inputs is one, as indicated by "s:1" in the first line. The s: field in a $PROD
block relates the top level substitution.

The O: label indicates an output, and the I: label indicates an input. The Q: fields in both records
represent "reference quantities". The P: field in the input record refers to the reference price of the
input.

10.6.3 $PROD Block with Nested Functions

The following production function describes a nested CES production function, one in which good X is
produced using labor, capital and intermediate inputs:

$PROD:X s:esub id:0 va:(esub/5)
O:PX Q:x0
I:PY(g) Q:yx0(g) id:
I:PL Q:lx0 P:pl0 va:
I:PK Q:kx0 P:pk0 va:

The first record in the $PROD block contains the nest identifier for top level inputs (a reserved name),
s:. The record introduces two new nest identifiers, id: and va:. These nest identifiers are arbitrary
names with up to four characters. The nest identifier for top level outputs is t:. Both t: and s: are
reserved names.

In the $PROD block shown here, commodities PY(g) enter jointly in fixed proportions in nest id:,
while labor (PL) and capital (PK) enter as part of the value-added nest (va:).

10.6.4 $PROD Block -- Joint Outputs

The following production function describes a production function which produces goods D and E as
joint products:

$PROD:E t:eta
O:PD Q:d0 P:pd0
O:PE Q:e0 P:pe0
I:PY Q:y0

The first record in this $PROD block specifies a value for t:, the top-level elasticity of transformation.
Commodities with prices PD and PE are produced using inputs of the commodity with price PY.

85

10.6.5 Taxes on Inputs in a $PROD Block

An input record in a production block may contain the following fields related to ad valorem taxes:

• A: Tax revenue agent. This field must reference a consumer name.

• T: Tax rate field identifier. (More than one tax may apply to a single entry.)

• N: Endogenous tax. This label must be followed by the name of an auxiliary variable.

• M: Exogenous tax multiplier. The ad valorem tax rate is the product of the value of the
endogenous tax (as in the N: field) and this multiplier. If the M: field is not present in a line
containing an N: field, M:1 is assumed.

Rules relating to the application of taxes on inputs are as follows:

A tax revenue agent must be specified prior to a T: or N: field. One important extremely valuable
service provided by MPSGE is that taxes may not be applied without consistent accounting of
associated tax revenue in consumer incomes. A tax therefore cannot be introduced without have
specifying a consumer which receives the revenue.

If revenue from a particular tax is to be paid to more than one consumer, then two (or more) tax fields
may be introduced on a single input with revenue accruing to different consumers. In the following
example two taxes are applied on the input of PL, one of which accrues to consumer FED (the federal
government) and another which accrues to consumer STATE (the state government):

I:PL Q:l0 A:FED T:tlfica A:STATE T:tlinc

The tax rate on an input is evaluated on a net basis. The user cost of an input is the market (net) price
marked up by all applicable taxes. In the previous example the user cost of labor is given by:

PLUSER = PL * (1 + tlfica + tlinc)

The net tax must be greater than -1, i.e. the user cost of any input must be positive.

Endogenous taxes are described by a pair of fields, labelled N: and M:. The N: field identifies the
auxiliary variable which is proportional to the tax rate, and the M: field indicates the proportionality
factor. Consider the input record:

I:PL Q:l0 A:FED N:TFED M:tlfica A:STATE N:TSTATE M:tlinc

In this case the user cost of labor is given by:

PLUSER = PL * (1 + TFED*tlfica + TSTATE*tlinc)

10.6.6 Taxes on Outputs in a $PROD Block

An output record in a production block may contain fields relating to proportional taxes:

• A: Tax revenue agent. Must be followed by a consumer name.

• T: Tax rate field identifier. (More than one tax may apply to a single entry.)

• N: Endogenous tax. This label must be followed by the name of an auxiliary variable.

• M: Exogenous tax multiplier. The ad valorem tax rate is the product of the value of the
endogenous tax (as in the N: field) and this multiplier. If the M: field is not present in a line
containing an N: field, M:1 is assumed.

Rules relating to the application of taxes on outputs are as follows:

A tax revenue agent must be specified prior to a T: or N: field.

If revenue from a particular tax is to be paid to more than one consumer, then two (or more) tax fields
must be introduced. In the following example two taxes are applied on the output of PX, one of which
accrues to consumer FED (the federal government) and another which accrues to consumer STATE (the
state government):

86

I:PX Q:l0 A:FED T:tvat A:STATE T:tsales

The tax rate on an output is evaluated on a gross basis. The user price of an output is the market
(gross) price marked down by all applicable taxes. In the previous example the producer price of X is
given by:

PXUSER = PX (1 - tvat - tsales)

The gross tax must be less than 1, i.e. the producer price of any output must be positive.

Endgenous taxes are described by a pair of fields, labelled N: and M:. The N: field identifies the
auxiliary variable which is proportional to the tax rate, and the M: field indicates the proportionality
factor. Consider the output record:

I:PX Q:l0 A:FED N:TFED M:tvat A:STATE N:TSTATE M:tsales

In this case the user cost of labor is given by:

PXUSER = PX * (1 - TFED * tvat - TSTATE * tsales)

10.6.7 Representing Technical Change

Suppose that good X is produced using inputs of K and L. Write the production function in calibrated
share form:

X = X0 * (theta*(L/L0)**rho + (1-theta)*(K/K0)**rho)**(1/rho)

At reference prices PL0, PK0, the demands for labor and capital are L0 and K0, and the level of output
is X0.

We use this point to define the value share, i.e.

theta = PL0*L0/(PL0*L0+PK0*K0)

Now, suppose we have a technical change parameter which is labor augmenting, so:

X=X0*(theta*(L*gamma/L0)**rho+(1-theta)*(K/K0)**rho)**(1/rho)

where gamma>1.

We can alter the function by setting L0’=L0/gamma, but we need to hold theta fixed, we let
PL0’=gamma*PL0.

In the MPSGE program, technical change then is represented as:

$PROD:X s:esub
O:PX Q:X0
I:PL Q:(L0/gamma) P:(PL0*gamma)
I:PK Q:K0 P:PK0

The intuitive explanation for introducing gamma in the reference price is that this incorporates the
"rebound effect" which is commonly part of technical change.

10.6.8 $DEMAND Block Syntax

A demand block provides an indicator of the commodity which a consumer demands and and a list of
initial endowment. The information provided in a $DEMAND block includes:

• Q: Reference quantity.

• R: Rationing instrument indicating an auxiliary variable.

Here is a typical demand function for a representative household in region r who holds exogenous
endowments of labor and sector-specific capital:

$DEMAND:RH(r)
E:PL(r) Q:le0(r)
E:RK(r,s) Q:ke0(r,s)
D:PC(r)

87

If this representative consumer earns no tax revenue, the following value will be assigned to the
consumer income variable:

RH(r) = PL(r) * le0(r) + sum(s, RK(r,s)*ke0(r,s));

Here is an example of a demand block for a consumer which holds exogenous endowment of labor and
an endogenous endowment of foreign exchange, based on the value of the auxiliary variable BOPDEF

$DEMAND:HH(h)
E:PL Q:labor(h)
E:PFX Q:bopdef0(h) R:BOPDEF(h)
D:PCON

In this example, assuming no tax revenue accrues to HH(h), the value assigned to the consumer
income variable is:

HH(h) = PL * labor(h) + PFX * BOPDEF(h) * bopdef0(h);

10.6.9 $CONSTRAINT Syntax

Auxiliary constraints in MPSGE models conform to standard GAMS equation syntax for
complementarity problems. The may reference variables defined under any of the four classes,
$SECTORS, $COMMODITIES, $CONSUMERS and $AUXILIARY.

Complementarity conditions apply to upper and lower bounds on auxiliary variables and the associated
constraints. For this reason, the orientation of the equation is important. When an auxiliary variable is
designated POSITIVE (the default), the auxiliary constraint should be expressed as a "greater or
equal" inequality (=G=). If an auxiliary variable is designated FREE, the associated constraint must be
expressed as an equality (=E=).

$CONSTRAINT:TAU
G =G= X * Y;

It is important to remember that the equations associated with complementarity problems are oriented.
In the default case, where an auxiliary variable has a lower bound of zero, then complementary
slackness implies that whenever the left-hand side of the associated constraint exceeds the right-hand
side, the variable value must be zero.

If you are unsure about how to orient a constraint for an auxiliary variable, think about how a constraint
might become slack in case the variable is zero. Complementary slackness in the case of the central
variables is quite clear: if equilibrium unit cost exceeds equilibrium unit revenue for a particular
activity, its level must be zero. If equilibrium supply of a good exceeds demand, the associated market
price must be zero. In the case of auxiliary variables, the complementarity idea may enter differently.
Here are a few examples:

• Classical unemployment:

$CONSTRAINT:U
PL / PC =G= minwage;

The real wage is rigid downward, then the unemployment rate must be zero if the real wage
exceeds the mandated minimum wage. Given the way that complementarity constraints are
defined in GAMS, the constraint shown above is not equivalent to the constraint:

minwage =L= PL/PC;

• Income support payments: when a transfer payment to a particular industry is defined by a target
level of sectoral sales

$CONSTRAINT:TRNPAY
 Y =G= YLEVEL;

When formulated in this way the transfer payment must be zero if the equilibrium output level
exceeds the target.

88

11. Appendix 2 – Algebraic Form of the TWOBYTWO Model

For completeness, we show here two ways of writing down the mathematical structure of the
TWOBYTWO model described in section 2.1.

Technology is described by production functions, fx(kx, lx) and fy(ky, ly), and preferences are described
by a utility function, U(cx,cy). (All of these functions are assumed to be linearly homogeneous, so fx(λ
kx, λ lx) = λ fx(kx, lx) etc.) The representative consumer in the model is endowed with capital, K, and
labour, L, and she consumes good C, a commodity produced through the “production function”
U(cx,cy).

The model is based on profit-maximizing/cost-minimizing producers, and budget-constraint utility
maximizing consumers. Technologies exhibit constant returns to scale, and all agents are price-takers.
The equilibrium conditions for this model could be represented as:

• Market clearance for goods

fx(kx, lx) = cx

fy(ky, ly) = cy

• Market clearance for factors

K = kx + ky

L = lx + ly

• Optimization by producers who choose

li and ki to solve max pi fi(ki, li) – rki – wli i ∈ {x, y}

• Optimization by consumers who choose

cx and cy to solve max U(cx,cy) s.t. px cx + py cy = wL + rK

In the MPSGE framework, however, individual preferences correspond to a single commodity, so the
model can be represented with optimization appearing only on the production side of the economy.
Optimization of utility enters the model through profit maximization within the U() sector. The
equilibrium conditions are then represented by:

• Market clearance for goods

fx(kx, lx) = cx

fy(ky, ly) = cy

U(cx,cy) = M/pc

• Market clearance for factors

K = kx + ky

L = lx + ly

• Optimization by producers

li and ki solve max pi fi(ki, li) – rki – wli i ∈ {x, y}

cx and cy solve max pc U(cx,cy) - px cx - py cy

• Income balance by consumers

M = wL + rK

89

12. Appendix 3 – Changes from Earlier Versions of MGE2GP

We describe briefly changes between earlier versions of MGE2GP. If you are familiar with one of
these earlier versions you should read the relevant parts of this section since that will probably be the
most efficient way of finding out what you need to know in order to move to the current version of
MGE2GP.

12.1 Changes from Version 1 (June 2004) to Version 1.1 (July 2004)

The values on the database are treated as values, not quantities. The updated data are balanced and so
can be used as a starting point for simulations.

Many of the example simulations come with Command files which reverse the shocks. [See, for
example, SJMGELBBACK.CMF in section 5.2.2.] These "back" simulations are good tests of the
model and the updated data.

The MINIMAL model (see section 6.1) is now supplied with MGE2GP.

Tax rate and power variables corresponding to t: fields take their arguments from those in the MGE
file. Ditto for p:, m: and n: fields. See section 3.2.7. [In Version 1, these variables had all possible
arguments.]

Tax rates are now updated.

Coefficients which occur twice outside of an expression in q: fields but are full rank are now updated.
[See section 6.4.3 of the June 2004 version of this document.]

Coefficients occurring with a negative sign (for example, q:-bbop) are now updated.

If there is an r: field in an e: line, simulations do not produce correct updated data if there is an
expression beginning "(" in the q: field. [But q:-bbop is ok.] See section 7.4.5.

No updated data is produced if some part of the data is not updatable. See section 7.4.

Exactly when updated data is valid is now documented. See section 7.4.

$constraint: equations can have shifters on them – see section 7.6.1.

$constraint: equations may be written in the TAB file with some MGE names replaced by TAB
file names – see section 7.6.2.

