THE EFFECTS OF CURRENT FISCAL RESTRAINT ON THE AUSTRALIAN ECONOMY:
An Applied General Equilibrium Analysis with Imperfect Competition

by

Kaludura ABAYASIRI-SILVA and
Mark HORRIDGE

Centre of Policy Studies
Monash University

Preliminary Working Paper No. OP-91 April 1999
The Effects of Current Fiscal Restraint on the Australian Economy: an Applied General Equilibrium Analysis with Imperfect Competition

Abstract

The objective of this paper is to examine the short run and long run effects of the reduction of government expenditure on the Australian economy using an applied general equilibrium model, which incorporates economies of scale and imperfect competition. The paper describes a 23-sector computable general equilibrium model of the Australian economy, and covers short-run as well as long-run profit-maximising behaviour of the firm. Economies of scale are incorporated in the model at the industry level and the firm level. The pricing behaviour is modelled as perfectly competitive, monopolistically competitive and in other ad hoc ways, as in Harris (1984). The different assumptions about technology, pricing behaviour and firm entry are combined in various ways to produce a variety of scenarios in our simulations. We present results for three different types of non-competitive regime and compare these with results generated by a traditional version of the same model.

(JEL classification: C68, L11, L13).
I. Introduction

The key feature of the current fiscal policy of the Howard government, as announced in the 1998/99 budget statement, is to return the underlying budget to surplus with the medium-term aim of maintaining the government budget in balance, on average, over the course of the economic cycle. Thus, in 1998/99, the underlying budget balance is expected to be in surplus by $2.7 billion compared with an estimated deficit of $1.2 billion in 1997/98. This improvement in budget balance is mainly achieved by a substantial reduction in government expenditure in recent years with further declines projected in 1998/99 and over the forward estimates period. The reduction in government outlays in 1996/97 and 1997/98 was estimated at about $7.2 billion. By 2001/02, underlying government outlays are projected to be around 23 percent of GDP compared with almost 27 percent of GDP in 1995/96. On the other hand, revenue is expected to remain steady at about 25 percent of GDP.

The main purpose of the current fiscal policy is to increase the level of national savings and address the current account deficit and massive foreign debt problem experienced by the Australian economy over the last two decades.

The objective of this paper is to examine the short run and long run effects of the reduction of government expenditure on the Australian economy using an applied general equilibrium model which incorporates scale economies and imperfect competition. The present model is based on the Abayasiri-Silva and Horridge, [herein after A-S & H, (1997)], Horridge (1987a and 1987b) and Cory and Horridge (1985). The model has 23 sectors and it covers short-run as well as long-run profit-maximising behaviour of the representative firm. In the short run there is a fixed number of firms and each firm may earn non-zero pure profits. In the long run, the number of firms varies, as entry and exit are free. Each firm earns zero pure profits. In the model, economies of scale are introduced either at the industry level or at the firm level. Similarly, pricing behaviour is modelled as perfectly competitive, monopolistically competitive and in other ad hoc way, as in Harris (1984) The different assumptions about technology, pricing and firm entry are combined in various ways to produce a variety of scenarios.

Section 2 of the paper describes the basic neo-classical core of the model. Section 3 describes our additions to this core, incorporating new specifications of pricing and technology. The model simulation procedure and main results are explained in Section 4. Some concluding remarks are presented in Section 5.

* We are grateful to Alan Powell for his comments and suggestions on an early version of this paper.
II. The Standard Neo-Classical Core Model

Our analysis builds on ORANI, an applied general equilibrium (AGE) model of the Australian economy (Dixon, Parmenter, Sutton and Vincent (DPSV), 1982). The standard version of ORANI has over 100 sectors and is rather cumbersome for experimental work. Our starting point has been Horridge, Parmenter and Pearson’s (1993), herein after HPP, aggregated version of ORANI covering 23 sectors.

Figure 1 is a schematic representation of the model's input-output database (which derives from the 1986-87 Australian Input-Output Tables). It reveals the basic structure of the model. The columns identify the following agents: (a) domestic producers divided into I industries, (b) investors divided into I industries, (c) a single representative household, (d) an aggregate foreign purchaser of exports, (e) an 'other' demand category, broadly corresponding to government, and (f) changes in inventories of domestically produced goods.
The rows show the structure of the purchases made by each of the agents identified in the columns. Each of the C commodity types identified in the model can be obtained locally or imported from overseas. The source-specific commodities are used by industries as inputs to current production and capital formation, are consumed by households and governments, are exported, or are added to or subtracted from inventories. Only domestically produced goods appear in the export and inventory columns. M of the domestically produced goods are used as margins services (wholesale and retail trade, and transport) which are required to transfer commodities from their sources to their users. Commodity taxes are payable on purchases.

Table 1: Commodity and Industry Classification

<table>
<thead>
<tr>
<th>Commodities</th>
<th>Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cereals</td>
<td>1 Broadacre rural</td>
</tr>
<tr>
<td>2 Broadacre rural</td>
<td>2 Intensive rural</td>
</tr>
<tr>
<td>3 Intensive rural</td>
<td></td>
</tr>
<tr>
<td>4 Mining, export</td>
<td>3 Mining, export</td>
</tr>
<tr>
<td>5 Mining, other</td>
<td>4 Mining, other</td>
</tr>
<tr>
<td>6 Food & fibre, export</td>
<td>5 Food & fibre, export</td>
</tr>
<tr>
<td>7 Food, other</td>
<td>6 Food, other</td>
</tr>
<tr>
<td>8 Textiles, clothing & footwear</td>
<td>7 Textiles, clothing & footwear</td>
</tr>
<tr>
<td>9 Wood related products</td>
<td>8 Wood related products</td>
</tr>
<tr>
<td>10 Chemicals & oil products</td>
<td>9 Chemicals & oil products</td>
</tr>
<tr>
<td>11 Non-metallic mineral products</td>
<td>10 Non-metallic mineral products</td>
</tr>
<tr>
<td>12 Metal products</td>
<td>11 Metal products</td>
</tr>
<tr>
<td>13 Transport equipment</td>
<td>12 Transport equipment</td>
</tr>
<tr>
<td>14 Other machinery</td>
<td>13 Other machinery</td>
</tr>
<tr>
<td>15 Other manufacturing</td>
<td>14 Other manufacturing</td>
</tr>
<tr>
<td>16 Utilities</td>
<td>15 Utilities</td>
</tr>
<tr>
<td>17 Construction</td>
<td>16 Construction</td>
</tr>
<tr>
<td>18 Retail & wholesale trade</td>
<td>17 Retail & wholesale trade</td>
</tr>
<tr>
<td>19 Transport</td>
<td>18 Transport</td>
</tr>
<tr>
<td>20 Banking & finance</td>
<td>19 Banking & finance</td>
</tr>
<tr>
<td>21 Ownership of dwellings</td>
<td>20 Ownership of dwellings</td>
</tr>
<tr>
<td>22 Public services</td>
<td>21 Public services</td>
</tr>
<tr>
<td>23 Private services</td>
<td>22 Private services</td>
</tr>
</tbody>
</table>

Current production requires intermediate inputs and three categories of primary factors: labour (divided into O occupations), fixed capital, and agricultural land. The 'other costs' category covers various miscellaneous industry expenses.

The industry and commodity classifications are different. Both are listed in Table 1. Multiproduction is confined to the first two industries, which produce the first
three, agricultural, commodities. Each of the remaining industries produces a single commodity. Three categories of primary factors (labour, capital and land) are distinguished, with the last used only in the first two industries. Labour is split into 2 occupational categories, skilled and unskilled.

Commodities 18 and 19 are margins commodities, i.e., they are required to facilitate the flows of other commodities from producers (or importers) to users. The costs of margins services, together with indirect taxes, account for differences between basic prices (received by producers or importers) and purchasers’ prices (paid by users).

Although there are fewer sectors, the theoretical specification of HPP is almost identical to that of ORANI\(^1\). It has a theoretical structure which is typical of an AGE model. It consists of equations describing, for some time period: (a) producers' demands for produced inputs and primary factors; (b) producers' supplies of commodities; (c) demands for inputs to capital formation; (d) household demands; (e) export demands; (f) government demands; (g) the relationship of basic values to production costs and to purchasers' prices; (h) market-clearing conditions for commodities and primary factors; and (i) numerous macroeconomic variables and price indices.

Demand and supply equations for private-sector agents are derived from the solutions to the optimisation problems (cost minimisation, utility maximisation, etc.) which are assumed to underlie the behaviour of the agents in conventional neoclassical microeconomics. Like ORANI, the model is specified as a system of linear equations relating percentage changes of the variables.

In HPP, production functions display constant returns to scale. Also, agents are assumed to be price takers, with producers operating in competitive markets which prevent the earning of pure profits. Our modifications, described below, alter these two aspects of the HPP model.

A. Structure of Production

HPP allows each industry to produce several commodities, using as inputs domestic and imported commodities, labour of several types, land, capital and 'other costs'. The multi-input, multi-output production specification is kept manageable by a series of separability assumptions, illustrated by the nesting shown in Figure 2. For example, the assumption of input-output separability implies that the generalised production function for some industry:

\[F(\text{inputs, outputs}) = 0 \]

may be written as:

\[H(\text{inputs}) = Z = G(\text{outputs}) \]

\(^{1}\)The original version of HPP contained additional stock-flow relationships, not present in ORANI, and omitted from the present model.
where Z is an index of industry activity. Assumptions of this type reduce the number of estimated parameters required by the model. Figure 2 shows that the G function is derived from a constant elasticity of transformation (CET) aggregation function, while the H function is broken into a sequence of nests. At the top level, commodity composites, a primary-factor composite and 'other costs' are combined using a Leontief production function. Consequently, they are all demanded in direct proportion to Z. We adopt the Armington (1969, 1970) assumption that imports are imperfect substitutes for domestic supplies: each commodity composite is a constant elasticity of substitution (CES) function of a domestic good and the imported equivalent.

As an example, cost minimising yields the following percentage forms of the intermediate input demand equations:

$$x^d = z - \sigma S^m (p^d - p^m)$$ \hspace{1cm} (3)

$$x^m = z + \sigma S^d (p^d - p^m)$$ \hspace{1cm} (4)

where x^d and x^m are the percentage changes in demands by some industry (with output z) for domestic and imported variants of some commodity. S^d and S^m are the value shares in demand of domestic and imported goods, and σ is the elasticity of substitution between domestic and imported variants. These equations are repeated for every commodity and industry, although we suppress the corresponding superscripts here and in subsequent equations.

The primary-factor composite is a CES aggregation of land, capital and composite labour. Composite labour is a CES aggregation of occupational labour types. Although all industries share this common production structure, input proportions and behavioural parameters may vary between industries.

B. Final Demands

The left hand side of Figure 3 shows the nesting structure for the production of new units of fixed capital. Capital is assumed to be produced with inputs of domestically produced and imported commodities. The production function has the same nested structure as that which governs intermediate inputs to current production. No primary factors are used directly as inputs to capital formation. The right hand side of Figure 3 shows the nesting structure for household consumption. The only difference is the Stone-Geary utility function used to aggregate commodity composites. This gives rise to the Linear Expenditure System.

The remaining categories of final demand are treated as follows. Government ('Other') demands and stocks display no substitution behaviour. Demand for exports of each commodity is assumed to be sensitive to price, using a constant-elasticity demand curve.
Figure 2: Structure of Production

Figure 3: Structure of Investment and Consumer Demand
III Modifications to the HPP Model

Our additions to the core model consist of two parts: new technology and new pricing behaviour. With respect to technology, we model economies of scale either at the firm level or at the industry level. For pricing, the new equations are specified at the firm, rather than the industry, level. Our vehicle for modelling firm behaviour is the idea of the 'representative firm'. We assume that each industry consists of N identical firms; the value of N differing between industries. In the short run the number of firms is assumed to be fixed. In the long run the number of firms becomes an endogenous variable which is determined by the entry and exit of firms in response to pure profits and losses experienced by the industry.

Each firm produces a single commodity output which is a close but imperfect substitute for the products of its domestic and foreign competitors. The firm is presumed to be a price taker with respect to inputs and a price maker with respect to sales. Domestically produced goods are used in both final demand (as consumption goods, capital goods, and export goods) and in demand for intermediate inputs. The firm faces a downward sloping demand curve for its products in each of these markets.

A. Increasing Returns to Scale Technology at the Firm Level

We have restricted increasing returns to scale technology (IRTS) to the single product industries. This allows us to adopt a simpler form for industry production functions:

\[Z = H(\text{inputs}) \]

where \(Z \) is domestic output. The \(H \) functions used in HPP are homogeneous degree 1, implying that both unit production costs and input proportions are dependent on input prices but are invariant to output level.

We reformulate the production function at the firm level as follows:

\[Z_f = L(\text{inputs}) = H_f(\text{inputs}) - F \]

where \(Z_f \) is firm output. \(F \) is a fixed (real) cost of production which is invariant to output levels, and is incurred annually by each firm. The fixed cost is treated as a recurrent cost rather than as a 'sunk' cost. The \(H_f \) function is a scalar multiple of the original CRTS production function \(H \):

\[H_f(\text{inputs}) = \alpha.H(\text{inputs}) \]

This gives rise to a total cost function:

\[\text{Total Cost} = \alpha.H(\text{inputs}) + F \]

\[Z_f = L(\text{inputs}) = H_f(\text{inputs}) - F \]

\[H_f(\text{inputs}) = \alpha.H(\text{inputs}) \]

2Our modifications apply only to those industries which produce a single commodity. We continue to treat the agricultural sectors as CRTS and perfectly competitive.
C = (F + Zf) M(input prices) \tag{8}

where M is the dual function of Hf and shows the marginal cost of producing a unit of output at given input prices. Firm unit costs are given by:

\[U = \frac{C}{Z_f} = \frac{F + Z_f}{Z_f} M \tag{9} \]

implying that unit costs decline with output, as shown in Figure 4.

![Figure 4: Unit Costs Decreasing with Output](image)

The symmetry of our representative firm assumption allows us to write total industry output, Zt as N.Zf. Thus our unit cost function may be written in terms of industry output as:

\[U = \frac{N.F + Z_t}{Z_t} M \tag{10} \]

Total industry fixed costs are thus directly related to the number of firms in the industry. On the other hand, total industry variable costs are proportional to output. Hence, the total industry unit cost, which includes both fixed and variable components, is a decreasing function of output, and an increasing function of the number of firms.

The assumption of hyperbolic unit cost curves is established practice in AGE implementations of IRTS. It implies that marginal cost is independent of output, although average cost falls. In empirical work, potential scale economies are often measured by cost disadvantage ratios (CDRs). This is the fraction by which unit costs exceed minimum costs. Industries with high CDRs lie on the leftward, steeper part of the hyperbola and have strongly increasing returns to scale. Industries which approach CRTS have low CDRs and lie on the flatter, rightward part of the curve.
A special feature of our implementation is that total input proportions are functions of relative prices only and do not vary with output. This follows from our assumption that at given prices, both the fixed and the variable parts of total input require the same proportions of commodities and primary factors. Some authors have assumed that the input proportions vary between the fixed and variable components. For example, Harris assumed that commodities (intermediate inputs) fed only into variable production, whilst capital and labour were used for both components. Moreover, the capital/labour ratio (K/L) for the fixed component was twice that for the variable component. The Cory/Horridge model followed the same procedure. Horridge (1987b) also excluded commodities from the fixed part of production, although he assumed that the K/L ratio was the same for both fixed and variable parts.

Our current view is that the linking of input proportions to output per firm is a complicating assumption, unsupported by data or indeed by economic priors. The idea that fixed costs are capital intensive perhaps arises from a mechanical metaphor: the same machine will produce double the output if we feed in double the materials. But we can think of equally compelling examples in which the fixed costs are overwhelmingly labour costs. Microsoft's Win95, for example, exhibits tremendous economies of scale—yet the fixed cost which Microsoft must recoup is largely composed of salaries. Systematic estimates of scale elasticities (or CDRs) are scarce; data relating input proportions to output per firm are virtually non-existent. Lacking the latter, most researchers have imposed ad hoc assumptions. Assumptions such as Harris's have the effect of adding factor demand shifts to the efficiency changes and pricing changes which already distinguish the IRTS model from its CRTS counterpart. This makes results even harder to explain.

Under internal scale economies, average cost exceeds marginal cost, so that perfectly-competitive, marginal-cost pricing would result in losses. Hence we must combine the hypothesis of internal scale economies with the hypothesis that firms enjoy some market power, enabling them to price above marginal cost. Our treatment of firm pricing is explained in Sections III C and III D.

B. External Economies of Scale

Since economies of scale at the industry level are external to the firm, they are labelled 'external' economies of scale. Under this scenario, individual firms have a standard CRTS production function. However, as industry output expands, each firm's unit cost curve falls. Thus, as an industry becomes bigger it becomes more efficient. This might happen because of some symbiosis effect. To implement this idea, we specify an industry-level unit cost function:

\[U = \frac{Q + Z_t}{Z_t} M, \quad (11) \]

where Q is some positive constant. Figure 4 can again be used to illustrate this cost curve, as long as we re-label the horizontal axis 'Industry Output'. However, from each firm's point of view, marginal and average costs of production are equal.
C. User's Love of Variety

Underlying our model of monopolistic competition, described below, is the idea that users differentiate between the products of different firms. This gives firms a degree of market power. We assume that, in purchasing, say, domestically produced shoes, the user regards the products of the various local firms to be imperfect substitutes. We effect this via the addition of another layer of CES nests to the bottom of Figures 2 and 3. This is illustrated in Figure 5. In the original HPP model each user (intermediate, investment, or consumer) treated 'shoes' as a CES composite of domestic and imported shoes. Now we add the idea that domestic shoes are in turn a CES composite of the product of N local shoe producers. For completeness, we have shown a similar nest for the N* varieties of foreign shoes.

Figure 5: User's Love of Variety

The percentage change in demand for the output of firm j is given by:

\[x_j = x^d - \gamma (p_j - p^d) \]

(12)

where \(x^d \) is the percentage change in the total demand for the domestic product, \(\gamma \) is the elasticity of substitution between varieties and \(p^d \) is the percentage change in the average price charged by domestic firms, given by:

\[p^d = \frac{1}{N} \sum_{k=1}^{N} p_k, \]

(13)

The symmetry of our representative firm assumption ensures that, ex ante, all firms producing a given commodity charge the same price. Hence, equations such as (12) need not actually appear in the model. Nevertheless, this specification, which has been adopted by most AGE modellers of imperfect competition, has two effects:
it allows us to calculate the elasticity of demand facing an individual firm, and
so to implement a model of optimal pricing (this is described below); and
it implies that the ratio of imported to domestic shoes, demanded by some
user, is a function not only of relative prices but also of the relative numbers
of domestic and foreign varieties.

The second effect has been ignored, probably by Harris and certainly by many of
those following in his wake such as Cory and Horridge. Yet it is an important part
of the theoretical tradition following Spence (1976) and Dixit and Stiglitz (1977).
The CES function implies that the subutility obtained from domestic shoes is
positively related to the number of domestic varieties:

\[U(X_d) = \left(\sum X_k^\beta \right)^{1/\beta}, \quad k = 1..N \]

but \[X_k = X_d/N \]

so

\[U(X_d) = (N(X_d/N)^\beta)^{1/\beta} = X_d N^{(1-\beta)/\beta} = X_d N^{1/(\gamma-1)}, \quad \text{where} \quad \beta = (\gamma-1)/\gamma \quad (14) \]

where \(N \) is the number of domestic varieties, and \(\gamma \) is the elasticity of substitution
between varieties.

To accommodate the relation between subutility and \(N \), we modify the
intermediate demand equations (3) and (4) by replacing each occurrence of \(x_d \) with
\(x_d + n/(\gamma-1) \). Similarly, we replace each occurrence of \(p_d \) with \(p_d - n/(\gamma-1) \), to get:\(^3\)

\[x_d = z - n/(\gamma-1) - \sigma S_m \{ p_d - n/(\gamma-1) \} - p_m \] \quad (15)

\[x_m = z + \sigma S_d \{ p_d - n/(\gamma-1) \} - p_m \] \quad (16)

The number of foreign varieties has been presumed constant in these equations.
We have also assumed that \(\gamma \) is constant: a more plausible assumption might be
that it declined with \(N \).

D. Monopolistic Pricing Rule

We have specified two alternative pricing rules for the imperfectly competitive
firm. The first is the optimal markup rule or Lerner Pricing Rule (LPR). The size
of the markup is inversely related to the elasticity of demand that each firm in the
industry perceives for its product:

\(^3\)Note: Our transformation of these demand equations follows Helpman and Krugman (1985, p.181). To see why
it is appropriate, note that the optimization problem underlying the original equations (3) and (4) is: choose
\(X_d, X_m \) to minimize \(P_d X_d + P_m X_m \) such that \(\text{CES}(X_d, X_m) = \text{constant} \). With love of variety, the constraint becomes
\(\text{CES}(X_d Q, X_m) = \text{constant} \), where \(Q = N^{1/(\gamma-1)} \). Rewriting the minimand as \((P_d/Q)(X_d Q) + P_m X_m \), we find that our problem has resumed its original form, except that \(X_d \) has been replaced by \(X_d Q \) and \(P_d \) by \(P_d/Q \).
$$P^l = \frac{E^l}{E^l - 1} M.$$ \hfill (17)

Here \(P^l \) is the Lerner price, \(M \) is marginal cost and \(E^l \) is the absolute value of the perceived elasticity of total demand for a firm. In percentage change form:

$$p^l = m + \varepsilon^l/(1 - E^l)$$ \hfill (18)

where \(p^l, m \) and \(\varepsilon^l \) are the percentage changes in \(P^l, M \) and \(E^l \) respectively.

Although each firm has several markets with different demand elasticities, we have excluded the possibility of discriminatory pricing. Instead, each firm faces a total demand curve. The total perceived elasticity of demand is then merely the average of the perceived elasticities in the various markets for that commodity:

$$E^l = \sum B_k E_k$$ \hfill (19)

where the \(B_k \) is the share of market \(k \) in total sales. The first values of \(k \) represent the 22 industries; the next the 22 capital creators, and the rest other final users.

To find the perceived elasticity of intermediate demand facing firm \(j \) in its sales to some industry, we assume that the firm conducts the following Bertrand-Nash experiment. It considers the effect of changing the price charged to each industry, assuming that the number of firms remains fixed, that rival firms will keep their prices constant\(^4\), and that there is no negative (downstream) impact of the change in the price of its product on the output level of the customer industry. Accordingly, the firm takes into account only the effects of substitution between its variant and those of other firms, and between domestic and imported equivalents. Substituting together equations (15), (12) and (13) derived above:

$$x^d = z - \frac{n}{(\gamma - 1)} - \sigma S^m\{(p^d - \frac{n}{(\gamma - 1)}) - p^m\}$$

$$x_j = x^d - \gamma(p_j - p^d)$$

$$p^d = \frac{1}{N}\sum p_k$$

and including the assumptions mentioned, we get:

$$x_j = -[\sigma S^m(1/N) + \gamma(1-1/N)]p_j \hfill (20)$$

so that the perceived elasticity of demand for one customer industry is \([\sigma S^m(1/N) + \gamma(1-1/N)]\). We can derive its percentage change as (see Cory and Horridge, 1985, p.17):

\(^4\)An alternative, the Cournot, assumption would be that rivals kept their output constant. This would imply some adjustment of prices by the rivals.
\[\varepsilon N E = S^m S^d \sigma (\sigma - 1) (p^d - p^m) + (\gamma - S^m \sigma) n \] (21)

Assuming that \(\sigma > 1 \), we see that if the domestic price rises relative to imports, the domestic market share (and each firm's share of this) falls and so the elasticity increases. The elasticity is also positively related to the number of firms. Following the pattern set for intermediate demand elasticities, we can derive the percentage changes in elasticities of final demand, yielding similar expressions.

E. Harris Pricing Rule

For an alternative pricing rule we follow Harris's (1984) mixed pricing rule—a mixture of the Lerner markup pricing rule and Eastman-Stykolt's (1966) import-parity pricing rule. Here we assume that the firm sets its price to a geometric mean of the price of the imported substitute, \(P^m \) and the price suggested by the markup pricing rule, \(P^l \). In percentage change form we have:

\[p^d = \alpha p^m + (1- \alpha) p^l \] (22)

where \(\alpha \) is a parameter, with value between zero and unity (0.5 in our simulations). \(p^m \) and \(p^l \) are respectively the percentage changes in the import price and in the Lerner price.

The Harris or mixed pricing rule is not derived from a single consistent model of optimising behaviour; its specification is obviously *ad hoc*. Nevertheless, it is widely used in econometric studies such as Bloch (1992 and 1994) as a flexible device to model pricing behaviour of manufacturing industries in an open economy such as Australia, which may lie between the bounds of import parity and Lerner markup pricing.

F. Market Equilibrium

With free entry or exit of firms from the industry, long-run equilibrium is ensured by the zero pure profit (ZPP) condition of the model. Thus, output per firm changes until each firm's recurrent fixed cost is just balanced by the excess of sales revenue over variable costs. An important feature of our model is that ZPP is enforced through entry or exit of firms. In the standard version of ORANI, output price is determined by the ZPP condition together with CRTS production technology. That is, if each firm within an industry is a price taker, output price would be set at the marginal cost of production which is equal, under CRTS, to the average cost of production. Hence, the revenue accruing to each firm would just cover its production costs. In the present model since each firm is setting its output price, the adjustment in the number of firms is necessary to eliminate pure profits. That implies a shift in the industry-wide production technology, as the amount of fixed cost per unit of output responds. Thus, in long-run equilibrium, price setting determines industry production technology.
The mechanism of Lerner markup pricing is illustrated in the two panels of Figure 6. Each panel shows the firm demand curve D, the marginal revenue curve MR, the average cost curve AC and the marginal cost curve MC. In each case, the profit-maximising output is that where the MR and MC curves intersect. In the left hand panel, this output allows a price higher than average costs to be charged, giving rise to pure profits (the shaded area). The profits induce the entry of more firms into the market, so reducing the market share of the typical firm. This causes both demand and marginal revenue curves to swivel clockwise, as indicated by the arrows. Eventually, the long-run equilibrium depicted at the right will be reached. There, the average cost curve is tangent to the demand curve, and pure profits have been eliminated.

A significant feature of the diagram is that the optimal Lerner markup over marginal cost is nearly the same in both panels. Indeed, had the demand curve been of the constant elasticity type, the profit-maximizing price and markup would have been identical in the two panels.

G. Database and Calibration

Our modifications to the HPP model entail extensions to its database. This must now contain data describing for each non-agricultural industry:

A. The number of rival firms, N. We set N at 10 for all sectors.
B. The share of fixed in total costs. We set this at 10% for all sectors.
C. The elasticity of substitution between the products of rival firms, γ. This was set to around 12 for most sectors—see below.
D. The level of pure profits as a share of value of output. This was set initially at zero, so that the same database could be used for both short- and long-run simulations.

Under the Lerner pricing hypothesis, any 3 of the above facts can be combined with the standard HPP database to imply the 4th, remaining, data item. For example, C and A could be used to deduce the perceived demand elasticity, and hence the markup over marginal costs. With B, the markup could be used to find D. We chose to deduce C from A, B and D. The resulting values varied somewhat between sectors, because of different sales shares and degrees of import competition.
All of the data that we added was purely hypothetical. We found no Australian data which could substitute for our own inventive powers. One reason is that none of the quantities A-D are directly observable. They must be measured indirectly, using supplementary hypotheses. For example, we hoped that Bloch (1992) might provide some data. Unfortunately, his regressions seemed to identify the whole of each industry's gross operating surplus with pure profits. Such an assumption seemed inconsistent with our model.

IV Results of Simulations

To investigate the effects of adding imperfect competition and increasing returns to scale to the neoclassical HPP model, we simulated the effect of a 10% reduction of the government expenditure. A variety of simulations were performed using different assumptions about production technology, pricing behaviour and market structure. Each simulation enforced one assumption from each of the following 3 groups:

<table>
<thead>
<tr>
<th>Table 2: Differences Between Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pricing Rule</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Entry/Exit</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

The letters C, I, E, M, etc., are used to build concise names for each simulation. Thus simulation CMS denotes constant returns to scale, marginal cost pricing, and fixed number of firms. Only some of the 18 possible combinations are simulated here; they are listed in Tables 4 and 5. Some combinations make little sense. Marginal cost pricing with firm-level scale economies implies losses—this combination has been marked 'n.a.' in both short- and long-run tables. In the short run, firms may exercise market power even without firm-level scale economies; we simulate this for the Harris case under CRTS but do not report analogous simulations under external economies of scale.
Table 3: Short-Run Simulations

<table>
<thead>
<tr>
<th>Technology</th>
<th>Pricing Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marginal-Cost Pricing</td>
</tr>
<tr>
<td>CRTS</td>
<td>CMS</td>
</tr>
<tr>
<td>IRTS (internal)</td>
<td>n.a.</td>
</tr>
<tr>
<td>IRTS (external)</td>
<td>EMS</td>
</tr>
</tbody>
</table>

In the long run, neither the CRTS nor the external economies case provide a mechanism whereby variations in numbers of firms can restore ZPP to an imperfectly competitive industry. Thus, Lerner and Harris pricing are allowed only with firm-level scale economies. In the other long-run scenarios we have assumed that firm numbers follow industry output: this would be consistent with U-shaped firm unit cost curves.

Table 4: Long-Run Simulations

<table>
<thead>
<tr>
<th>Technology</th>
<th>Pricing Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marginal-Cost Pricing</td>
</tr>
<tr>
<td>CRTS</td>
<td>CML</td>
</tr>
<tr>
<td>IRTS (internal)</td>
<td>n.a.</td>
</tr>
<tr>
<td>IRTS (external)</td>
<td>EML</td>
</tr>
</tbody>
</table>

The simulations named CMS and CML generate the standard HPP results based on CRTS and perfect competition\(^5\). They serve as bench-marks, with which to compare the results from the alternative assumptions about technology and pricing.

Our simulations are designed to elucidate the effects that the various pricing and technology assumptions have on our numerical results. So, for example, we have assumed that all sectors use Lerner pricing, or that none do. This simplifies interpretation. More realistic simulations might, for example, specify Lerner pricing for one sector, and Harris pricing for another. Again, it is unlikely that the same degree of scale economies applies to all industries.

A Factor Markets and Macro Environment

Apart from the firm entry/exit assumptions the short- and long-run simulations differ in their treatment of factor markets. In the short run, capital stocks in each industry are fixed, and capital rentals move freely. Real wages are held fixed, and labour is assumed to be in elastic supply. In the long-run simulations, opposite assumptions apply: industry capital stocks adjust to maintain fixed real rates of

\(^5\)Except that in the long run, changes in the numbers of firms influence utility and demands slightly, via the love-of-variety effect.
return, and wages for the different industries and skill groups all move as one to maintain an exogenous economy-wide employment target.

For both sets of simulations government and inventory demands are held fixed, as are investment/capital ratios in each industry. In the short run, real household consumption is fixed; in the long run, nominal household consumption follows nominal GDP. The numeraire is the exchange rate.

B. Short-Run Results

Table 5 presents our short-run simulations of the 10 percent reduction of government expenditure. We assume that the capital stock, real investment and real consumption are fixed in the short-run simulations. The first 12 rows of the table show macro results for the Australian economy. The next 23 columns show effects on commodity outputs.

The columns correspond to the various short-run simulations based on different technology, pricing behaviour and market structure. The first column of results (CMS) corresponds to a conventional short-run simulation which assumes constant returns to scale and average cost pricing. The third column (IOS) results assumes increasing returns to scale and the Lerner markup pricing. The columns two and four assume the Harris pricing rule with constant returns to scale and increasing returns to scale respectively.

In all columns the reduction of government expenditure causes the employment to fall by 2% and the real GDP to fall 1.2% to 1.6% in the short-run. The import volume to fall by almost 1%. For the CMS and IOS simulations the export volume increase by 3.4% and 3.1% respectively, while for the CHS and IHS simulations it increases only by 1%. In the case of external economies with marginal cost pricing (EMS) export volume increases by 2.4%. Nevertheless the short-run impact on the balance of trade of the reduction of government expenditure is marginal. The ratio of balance of trade to GDP increases by 0.5 percentage points for the cases of CMS and IOS simulations and that ratio increases only by 0.2 for the CHS and IHS simulations.

There are two reasons for these macroeconomic results. First, the fiscal contraction has a negative impact on the level of employment in the short-run because broadly the government is a labour intensive sector of the economy. Thus, the reduction of the size of the government sector results in decrease in employment not only that sector but also a drop in employment in the private sector services which are directly related to the government sectors. Hence a fall in real GDP in the short-run. Second, because the government consumes both imported and domestically produced goods, the cut in spending reduces the demand for both these commodities. Since we assume that the real consumption and real investment are fixed in the short-run, a fall in government imports leads to a decrease in the volume of imports. On the other hand, a fall in the demand for domestically produced goods leads to a fall in domestic prices as revealed by GDP deflator and hence results in a real devaluation. (In our simulations we treat the nominal exchange
Table 5: Results of Short run Simulations of the Reduction of Government Expenditure

<table>
<thead>
<tr>
<th>Simulations: Returns:</th>
<th>CMS</th>
<th>CHS</th>
<th>IOS</th>
<th>IHS</th>
<th>EMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pricing:</td>
<td>Marginal</td>
<td>Harris</td>
<td>Lerner</td>
<td>Harris</td>
<td>Marginal</td>
</tr>
<tr>
<td>Macro Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Balance of trade/GDP</td>
<td>0.588</td>
<td>0.280</td>
<td>0.530</td>
<td>0.237</td>
<td>0.441</td>
</tr>
<tr>
<td>3. GDP PI</td>
<td>-1.01584</td>
<td>-0.271732</td>
<td>-0.89491</td>
<td>-0.23383</td>
<td>-0.504163</td>
</tr>
<tr>
<td>4. Investment PI</td>
<td>-0.730088</td>
<td>-0.139315</td>
<td>-0.63803</td>
<td>-0.117932</td>
<td>-0.410462</td>
</tr>
<tr>
<td>5. Consumer PI</td>
<td>-0.867703</td>
<td>-0.232991</td>
<td>-0.76227</td>
<td>-0.198548</td>
<td>-0.487485</td>
</tr>
<tr>
<td>6. Export PI</td>
<td>-0.324126</td>
<td>-0.103263</td>
<td>-0.29289</td>
<td>-8.87E-02</td>
<td>-0.221687</td>
</tr>
<tr>
<td>7. Real GDP</td>
<td>-1.2482</td>
<td>-1.59864</td>
<td>-1.31188</td>
<td>-1.64151</td>
<td>-1.41654</td>
</tr>
<tr>
<td>8. Import volumes</td>
<td>-0.889933</td>
<td>-0.953233</td>
<td>-0.81741</td>
<td>-0.828167</td>
<td>-0.821473</td>
</tr>
<tr>
<td>9. Capital stocks</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10. Real Investment</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11. Real Consumption</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12. Export Volumes</td>
<td>3.46293</td>
<td>1.09822</td>
<td>3.1249</td>
<td>0.943984</td>
<td>2.43173</td>
</tr>
<tr>
<td>Commodity Outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Cereals</td>
<td>0.592833</td>
<td>0.159106</td>
<td>0.516279</td>
<td>0.134528</td>
<td>0.360194</td>
</tr>
<tr>
<td>2. Broadcare rural</td>
<td>0.630538</td>
<td>0.141318</td>
<td>0.536851</td>
<td>0.115731</td>
<td>0.408106</td>
</tr>
<tr>
<td>3. Intensive rural</td>
<td>0.108234</td>
<td>-0.686231</td>
<td>0.0342</td>
<td>-0.703776</td>
<td>-0.191719</td>
</tr>
<tr>
<td>4. Mining export</td>
<td>0.909722</td>
<td>0.23955</td>
<td>0.864937</td>
<td>0.216348</td>
<td>0.688327</td>
</tr>
<tr>
<td>5. Mining other</td>
<td>0.320661</td>
<td>1.99E-02</td>
<td>0.307834</td>
<td>1.99E-02</td>
<td>0.204933</td>
</tr>
<tr>
<td>6. Food & fibre export</td>
<td>1.60085</td>
<td>0.312148</td>
<td>1.45496</td>
<td>0.2808</td>
<td>1.36309</td>
</tr>
<tr>
<td>7. Food other</td>
<td>0.576846</td>
<td>4.84E-02</td>
<td>0.501437</td>
<td>3.71E-02</td>
<td>0.367087</td>
</tr>
<tr>
<td>8. TCF</td>
<td>0.310282</td>
<td>-0.304861</td>
<td>0.25362</td>
<td>-0.266413</td>
<td>9.32E-02</td>
</tr>
<tr>
<td>9. Wood products</td>
<td>-0.521175</td>
<td>-1.05135</td>
<td>-0.47861</td>
<td>-0.913747</td>
<td>-0.629185</td>
</tr>
<tr>
<td>10. Chemicals & oils</td>
<td>5.87E-02</td>
<td>-0.669634</td>
<td>0.0223</td>
<td>-0.582273</td>
<td>-0.172113</td>
</tr>
<tr>
<td>11. Mineral products</td>
<td>-0.491005</td>
<td>-0.77517</td>
<td>-0.45074</td>
<td>-0.683901</td>
<td>-0.528513</td>
</tr>
<tr>
<td>12. Metal products</td>
<td>0.32868</td>
<td>-0.4424</td>
<td>0.250758</td>
<td>-0.383181</td>
<td>4.35E-02</td>
</tr>
<tr>
<td>13. Transport equipment</td>
<td>0.99</td>
<td>-0.250655</td>
<td>0.826219</td>
<td>-0.227717</td>
<td>0.567754</td>
</tr>
<tr>
<td>14. Other machinery</td>
<td>0.443679</td>
<td>-0.293974</td>
<td>0.37007</td>
<td>-0.26968</td>
<td>0.159989</td>
</tr>
<tr>
<td>15. Other manufacturing</td>
<td>0.377455</td>
<td>-0.532138</td>
<td>0.29438</td>
<td>-0.462567</td>
<td>5.73E-02</td>
</tr>
<tr>
<td>16. Utilities</td>
<td>-0.815448</td>
<td>-1.15976</td>
<td>-0.7465</td>
<td>-1.01503</td>
<td>-0.806811</td>
</tr>
<tr>
<td>17. Construction</td>
<td>-0.936573</td>
<td>-0.953048</td>
<td>-0.93506</td>
<td>-0.948397</td>
<td>-0.939494</td>
</tr>
<tr>
<td>18. Trade</td>
<td>-0.119219</td>
<td>-0.396314</td>
<td>-0.11614</td>
<td>-0.346639</td>
<td>-0.164276</td>
</tr>
<tr>
<td>19. Transport</td>
<td>0.311413</td>
<td>-0.58423</td>
<td>0.24530</td>
<td>-0.530805</td>
<td>-1.68E-03</td>
</tr>
<tr>
<td>20. Banking & finance</td>
<td>-0.850016</td>
<td>-1.24785</td>
<td>-0.79848</td>
<td>-1.11597</td>
<td>-0.893932</td>
</tr>
<tr>
<td>21. Dwellings</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23. Private services</td>
<td>-0.871061</td>
<td>-1.00645</td>
<td>-0.85366</td>
<td>-0.96333</td>
<td>0.866455</td>
</tr>
</tbody>
</table>

rate as numeraire and assume that world prices are fixed). This leads to an increase in export volume in the short-run. Thus the real devaluation, combined with the fall in economic activity results in an improvement in the ratio of trade balance to GDP by 0.5 percentage points in the short-run.
In all simulations, the main losers are the service sector industries which include Public services, Private services, Banking & Finance, Utilities and Trade. The Public services are contracted by 7% as result of government reduction of expenditure. In addition to service sector, construction and mineral products industries are contracted by 1% and 0.5%, respectively. The winners are the exporting industries in the agricultural and mining sectors. These industries face elastic overseas demand and enjoy the reduction in costs due to the reduction of domestic demand. The other industries enjoy smaller gains, benefiting from the reduction in costs.

The second column of results (CHS) includes the effects of partial import-parity pricing or the Harris pricing rule. Because of the partial import parity pricing rule the effects of the reduction in aggregate demand due to reduction in government expenditure reflects smaller reductions in all price indices shown under macro variables. For example consumer price index fall only by 0.23% compared with the CMS (first column) case which is reported as 0.86%. Thus for the CHS case the less reduction in production costs lead to increase the export volume only by 1%. As a result the export sector experience only a marginal gain compared to the CMS case. For example food and fibre export rise only by 0.3% compared to the 1.6% increase shown for the CMS case. Moreover, import competing industries such as TCF reported a decline in production by 0.3% compared to the 0.3% gain reported in the CMS case.

The third column (IOS) is simulated using internal economies of scale: unit costs fall as output rises. However, because marginal (rather than average) costs enter into our pricing rules, the results are very similar to those derived under CRTS assumptions. The small differences result from the fact that contracting sectors release less resources and expanding sectors absorb more, than under CRTS.

The results of the fourth column (IHS) shows the effects of the Harris pricing rule with internal economies of scale. The results are very similar to those derived under the assumption of Harris pricing with constant returns to scale (CHS).

The final column (EMS) assumes external economies of scale and average cost pricing. The increasing returns to scale imparts a clockwise twist to the upwardly-sloping short-run supply curves of the CRTS environment. This leads to a general flattening of supply curves, and so, in general, to more polarized sectoral results than under CRTS. As in the previous two columns, sectoral efficiency changes, proportional to output, are taking place; unlike the previous two columns the efficiency changes are passed on to customers. Thus, the exporting sectors fare better in this scenario than in all the preceding columns.

C. Long-Run Results

Table 6 shows results from our long-run simulations. The main difference from the short-run simulations is that we assume that aggregate employment is fixed (although mobile between industries) and that capital is available in elastic supply, but must earn fixed real rates of return. The changed factor market assumptions
Table 6: Results of Long-run Simulations of the Reduction of Government Expenditure

<table>
<thead>
<tr>
<th>Simulations:</th>
<th>CML</th>
<th>IOL</th>
<th>IHL</th>
<th>EML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retuns:</td>
<td>Constant</td>
<td>Internal</td>
<td>Internal</td>
<td>External</td>
</tr>
<tr>
<td>Pricing:</td>
<td>Marginal</td>
<td>Lerner</td>
<td>Harris</td>
<td>Marginal</td>
</tr>
</tbody>
</table>

Macro Variables

1. Employment | 0 | 0 | 0 | 0 |
2. Balance of trade/GDP | 1.860 | 1.840 | 1.660 | 1.780 |
3. GDP PI | -1.25501 | -1.13751 | -1.14799 | 0.723853 |
4. Investment PI | -1.11234 | -1.01701 | -1.45819 | 0.361554 |
5. Consumer PI | -1.05156 | -0.9521 | -0.82967 | 0.738423 |
6. Export PI | -1.03683 | -1.03668 | -0.84572 | -1.0945 |
7. Real GDP | 1.23192 | 1.2517 | 0.145458 | 2.072 |
8. Import volumes | -0.98214 | -0.76722 | -2.01832 | 2.69875 |
9. Capital stocks | 2.63327 | 2.67143 | 1.91946 | 3.95893 |
10. Real investment | 2.30964 | 2.35937 | 1.6135 | 3.79943 |
11. Real consumption | 1.02847 | 1.0663 | -0.17287 | 2.05743 |

Commodity Output

1. Cereals | 1.58757 | 1.4313 | 2.16553 | -1.6888 |
2. Broadcare rural | 1.63061 | 1.48015 | 2.04172 | -1.73966 |
3. Intensive rural | 1.50472 | 1.34607 | 1.27705 | -2.06857 |
5. Mining other | 15.9299 | 14.9963 | 16.1501 | 1.29248 |
7. Food other | 1.66061 | 1.57508 | 0.69532 | 0.158972 |
8. TCF | 1.28326 | 1.19068 | 1.02986 | -0.520231 |
9. Wood products | 0.973874 | 0.931289 | 0.196514 | 0.253646 |
10. Chemicals & oils | 2.65936 | 2.6202 | 1.5648 | 1.95288 |
11. Mineral products | 1.17466 | 1.1737 | 0.105904 | 1.27258 |
12. Metal products | 2.74815 | 2.68963 | 1.59628 | 1.80574 |
13. Transport equipment | 4.40664 | 4.19339 | 3.9185 | 0.712529 |
14. Other machinery | 3.67496 | 3.63406 | 2.49436 | 3.23651 |
15. Other manufacturing | 2.70356 | 2.59895 | 1.93952 | 0.737041 |
16. Utilities | 1.39357 | 1.4746 | 0.143519 | 2.98286 |
17. Construction | 0.626752 | 0.670575 | -0.63322 | 1.78164 |
18. Trade | 1.49546 | 1.50722 | 0.580442 | 1.67062 |
20. Banking & finance | 1.10169 | 1.09894 | 4.96E-02 | 1.13834 |
21. Dwellings | 1.81042 | 1.87204 | 0.102379 | 3.66569 |
22. Public services | -6.54198 | -6.56147 | -6.94588 | -6.56008 |
23. Private services | 0.425249 | 0.456862 | -0.80633 | 1.2837 |
mean that individual industry supply curves are very much flatter than in the short run.

As in Table 5, the columns correspond to the various long-run simulations based on different technology, pricing behaviour and market structure. In all simulations the reduction of government expenditure causes increase in real investment approximately by 2 to 4 percent. The highest increase of 3.8% is recorded in EML (External economies with marginal cost pricing) simulation and the lowest increase of 1.6% is given in IHL (Internal economies with Harris pricing) simulation. In the first (CML) and the second (IOL) columns, the increase in real investment causes increase in real GDP by 1.2% in the long-run. Nevertheless, for the IHL simulation (third column) the real GDP increase only by 0.14% while for the EML simulation (fourth column) the real GDP increases by 2%. In the first two (CML and IOL) columns the real consumption increases by 1% and in the fourth (EML) column real consumption increases by 2%. The lower output growth (0.14%) reported in IHL simulations results in the drop of real consumption by 0.1%.

In the CML and IOL simulations, the import volume falls by almost 1% and the export volume is risen by 12% in the long-run. In the third, IHL, column the import volume falls by 2% and export volume increases by 9.6%. Meanwhile, in the EML (fourth column) simulation import volume is risen by 2.6% and export volume increases by 15.5%. The ratio of balance of trade to GDP increases by 1.8 in the CML, IOL and EML simulations. In the IHL simulations that ratio increases only by 1.7.

In the first, CML, column (with CRTS) we see that the industries which expanded in the short run expand more in the long run. The increased output, in the long run, comes from increase in investment and hence increased employment of capital. The increased investment generated from the reduction of government expenditure. Thus, capital intensive industries expand at a faster rate compared to the other industries. Mining industry expand by 14 to 15 percent in CML, IOL and IHL simulations. In EML simulations the mining industry expand by 39.5 percent (reasons explained below). The lowest expansion rate is reported by private sector services industries which increase output only by 0.4%. Moreover, wood products, construction, textile cloth and footwear (TCF), mineral products, utilities, and banking & finance industries expand by less than 1.5%. Nevertheless, public sector which contracted by 7% percent in the short-run continued to contract by 6.5% in the long-run.

Overall, the second column of results (IOL) which assumes internal economies of scale with Lerner pricing almost resemble to the results of the first column (CML) which assumes constant returns to scale with marginal cost pricing.

On the other hand, the third column of results (IHL), which assumes internal economies of scale with Harris pricing, exhibits the strong industry rationalization effects which are needed to prevent losses when an import-parity pricing rule is followed. For IHL simulations output expansions in all industries (except other
mining industries) are less than compared with the results of the first two columns. Thus, in IHL simulations the real GDP increased only by 0.15 percent.

The final column of results (EML) contains fairly dramatic shifts in sectoral outputs. In this simulation industry supply curves are genuinely downward sloping, as factor scarcities apply only at the economy-wide level. The losers (Food and fibre, Intensive rural, Broadacre rural, Cereals, and TCF) slide back up their supply curves and so fare worse than in any other scenario. Results are dominated by the dramatic expansion of the Mining, Export sector (by 39.5%), which faces the most elastic overseas demand. Probably, the assumption of increasing returns is unrealistic for this sector.

V Concluding Remarks

We have simulated the short-run and long-run effects of 10% reduction in government expenditure on the Australian economy using an applied general equilibrium model which incorporates scale economies, love of variety, and imperfect competition. The present model builds on the work of A-S and H (1997), Horridge (1987a and 1987b), and Cory and Horridge (1985).

The short-run results of our benchmark simulations, using CRTS and marginal/average cost pricing, show that the reduction in government expenditure caused to fall in employment by 2% and real GDP by 1.2%. Service industries such as public services, private services, banking and finance and trade industries to shrink. Other manufacturing industries, except mineral products, wood products, utilities and construction, to expand. On the other hand, in the long-run the real investment increased by 2.3% and the real GDP increased by 1%. This leads to increase the real consumption by 1 percent. In the long-run all industries expanded except the public sector service. It continues to shrink by 6.5 percent.

The, simulations using Lerner pricing and internal economies of scale yielded results which were very similar to those obtained under CRTS. Certainly the differences were far less than those which would result from differences in assumptions about export demand elasticities or factor substitution elasticities or about macro closure. One lesson is that AGE models which assume CRTS and perfect competition also treat some types of IRTS and imperfect competition quite accurately.

Nevertheless, quite different results were obtained by using some of the alternative assumptions about pricing and technology. The Harris pricing rule, of which one component is import-parity pricing, had the effect of partially shielding the import-competing sectors from the lower import prices. In the long-run simulation, the assumption of external economies of scale dramatically altered simulation results. Unfortunately, neither the Harris pricing nor the external economies of scale are supported by a sound theoretical underpinning.

Love-of-variety effects were present only in the long-run simulations and were not large. They dampened the effect of Harris-type assumptions, where efficiency gains came from reductions in firm numbers. By contrast, the effects of external
economies were exaggerated, under our assumption that the number of varieties increased with output.

These results reinforce the last decade's experience of incorporating IRTS and imperfect competition into AGE models. AGE modellers are obliged to posit behaviour for every sector in the economy, but typically lack the sectoral time-series data which are needed. This lack is usually made up for by bland assumptions supported by strong economic priors: the simple neo-classical assumptions. A high level of sectoral disaggregation is the AGE modellers' most potent method of increasing the realism of simulations.

Furthermore, it is difficult to choose between the many possible ways of modelling IRTS and imperfect competition. The approaches that seem theoretically attractive—such as Lerner pricing and internal scale economies—seem often to have little effect on results. So far no approach has emerged which both affects model results and commands a consensus amongst modellers.

REFERENCES

