National CGE Workshop 2015

Centre of Policy Studies

August 10, 2015 VU City Convention Centre Victoria University, 300 Flinders St Melbourne

National CGE Workshop, 2015

Victoria University City Convention Centre Level 12, 300 Flinders St, Melbourne August 10, 2015

Presenters will speak for 20 minutes, with 10 minutes for questions.

8:30	Registration & co	ffee	
8:50	Welcome		
Session 1	: CGE Applications	in Asia (Chair: Ja	anine Dixon)
9:00	Rod Tyers	UWA Business School	Japan's oligopolies: modelling the potential gains from third arrow reforms
9:30	Tsue-Ing Yap	<i>Centre of Policy Studies, VU</i>	Policy Options in preparation for the post- hydrocarbon era of Brunei Darussalam
10:00	Deeptha Wijerathna	Griffith University	Place-Based versus Place-Neutral Policies for Promoting Regionally Balanced Economic Growth: A Sri Lankan Case using CGE based Simulation
10:30	Sang-Ho Nam	Korea Institute for Health & Social Affairs	Growth- and employment-oriented fiscal expenditures in South Korea

11:00 Morning Tea

Session 2:	: Keynote lecture (Chair: James Gie	secke)
11:30	Professor Warwick McKibbin	Crawford School of Public Policy, ANU	Long-term Economic Growth Projections and Factor Shares

12:30 Lunch

Session 3	CGE applications	in Australia (Cha	ir: Paul Gretton)
1:30	Janine Dixon	Centre of Policy Studies, VU	Forecasting for labour markets with a CGE model
2:00	Peter Forsyth	Monash University	A review of the use of CGE models in airport evaluation
2:30	Lindsay Fairhead	Productivity Commission	Some aspects of labour market modelling using the VUMR model
3:00	Afternoon Tea		

Session 4:	Innovations in CG	E modelling (Cha	air: Rod Tyers)
3:30	James Giesecke	<i>Centre of Policy Studies, VU</i>	Simulations with a financial CGE model of the Australian economy
4:00	Liangyue Cao	Department of the Treasury	Implementing a stylised inter-temporal dynamic CGE model in GEMPACK.
4:30	Glyn Wittwer	Centre of Policy Studies, VU	A decade and more of modelling regional Australia with TERM
5:00	close		
6:30	Informal dinner (a LUDLOW BAR & T Building 3, 6 River Southbank Melbo 03 9699 1676 http://www.ludlo	at participants' ov TERRACE Tside Quay urne wbar.com.au/	wn expense),

Call for Papers

Economic Papers, published by the Economics Society of Australia, provides a forum for the presentation of research and debate in applied economics and economic policy analysis. Contributions in the form of articles are sought from economists working in these areas. Articles are intended to be written in plain English and to be accessible and of interest to a broad range of economists working in business, government and in academic communities. We have published and are interested in papers applying CGE techniques to domestic or international policy issues. Papers should normally be 3,000 to 5,000 words. All contributions are refereed.

Abstracts

Japan's Oligopolies: Potential Gains from Third Arrow Reforms

Akihito ASANO Department of Economics Sophia University

Rod TYERS Business School, University of Western Australia and Research School of Economics, Australian National University

Progress has been made in economic reform under the "Abenomics" first (monetary policy) and second (taxation reform) "arrows". The third, which emphasises reforms to labour markets, company tax and competition, has been more politically difficult and slower to emerge. This paper explores the gains that are possible from the third arrow program. Economic rents and industry concentration levels are first identified from Nikkei firm specific data and used to construct an economy-wide model that represents oligopoly behaviour and its regulation explicitly. The analysis finds that modest gains in both efficiency and growth are available from increases in Japan's labour supply and reductions in company tax rates, while substantial gains are possible from active competition policy that embodies freer entry and, where necessary, pricing surveillance and price cap regulation. Central to the results is that a resurgent Japanese economy requires efficiency improvements that raise home rates of return and rebalance its large home and foreign asset portfolio toward home investment and capital growth.

Policy Options in preparation for the post-hydrocarbon era of Brunei Darussalam

Tsue Ing Yap, Philip Adams and Janine Dixon Centre of Policy Studies, Victoria University

Brunei Darussalam, a highly hydrocarbon-dependent economy is facing the inevitable fate of depletion of her oil and gas resources. With limited success in her diversification efforts for the past decades, the future appears bleak if no urgent and effective policies are undertaken. This paper attempts to elucidate such a post-hydrocarbon scenario and a possible policy option to revive some economic growth through productivity growth, with the use of BRUGEM, a recursive dynamic computable general equilibrium (CGE) model.

Findings from the policy simulation indicate that in order to generate additional one per cent real GDP annual growth rate on top of the baseline forecast, the overall productivity has to improve by 2.4 per cent per annum. This will also lead to the improvement for real GDP per person by 0.99 per cent per annum.

This finding calls for urgent well-coordinated microeconomic reforms to take place to improve productivity from all levels. At the same time, the government must look into issues of increasing aggregate investment as the investment in hydrocarbon sector declines. The success of these reforms will much depend on the political will and unwavering commitment from the relevant parties in preparation for a smooth transition into the post-hydrocarbon era.

Place-Based versus Place-Neutral Policies for Promoting Regionally Balanced Economic Growth: A Sri Lankan Case using CGE based Simulation

Deeptha Wijerathna, Christine Smith, Athula Naranpanawa and Jayatilleke S. Bandara Department of Accounting, Finance & Economics Nathan Campus, Griffith University Nathan, Queensland 4111 Australia

Reducing regional disparities while maintaining economic growth represent a major challenge for many developing countries like Sri Lanka. This study analyzes the advantages of place-based versus place-neutral polices for generating national and regional economic growth. Simulation experiments are carried out based on selected agricultural policies using a disaggregated Sri Lankan bottom-up regional Computable General Equilibrium (CGE) model developed by the author. Preliminary results suggest that place-neutral policies are better in terms of national growth; but place-based policies are better in terms of regional disparity reduction impacts. However these results may depend on the nature of the policies and the targeted industry.

Growth- and Employment-oriented Fiscal Expenditures in South Korea

Sang-Ho Nam, Research Fellow, KIHASA +82-44-287-8109, johnnam@kihasa.re.kr

In the past several decades, fiscal policy played a key role for the evolution of the Korean economy. But, in the late 1990s, the unexpected financial crisis changed economic and social environment. Low economic growth is expected to continue and increasing desire for welfare expenditures becomes an important social issue. While experiencing unprecedented rapid aging and persistently low fertility rate, the future of the Korean economy is not that promising.

In this paper, the effect of fiscal expenditure on employment and welfare is investigated. In accordance with the change in social and economic environment, it is necessary to re-consider the role of fiscal policy. For this purpose, a version of ORANI-G computable general equilibrium (CGE) model is employed.

The four type government expenditures are analyzed: public administration and national defense, medical expenditure, educational expenditure, and social welfare expenditure. According to the results, social welfare expenditure has the largest impact in employment, public administration and national defense is the second, while medical expenditure has the smallest employment effect. This result is due to the nature of medical industry that it is more capital intensive than other industries considered.

Forecasting for labour markets with a CGE model

Janine Dixon and Tony Meagher Centre of Policy Studies

Formal labour market forecasts produced using an economy-wide model embody modern economic theory and large amounts of relevant economic data, they are comprehensive and coherent, and they can be updated regularly at reasonable cost. Recent forecasts produced with the Vic-Uni model and additional labour market extensions take into account current and expected conditions in the Australian economy including developments in the mining and manufacturing sectors, the fall in the terms of trade and consequent depreciation of the real exchange rate, sluggish productivity growth, and increasing acquisition of tertiary qualifications. These circumstances do not bode well for workers in construction and certain manufacturing occupations. Opportunities may exist for these workers to transfer into other occupations, particularly in transport and logistics.

Economic Evaluation of Investments in Airports – Old and New Approaches

Peter Forsyth Monash University, Clayton, 3800, Australia peter.forsyth@buseco.monash.edu.au

Hans-Martin Niemeier University of Applied Sciences, Werderstr. 73, D 28199 Bremen / Germany P: +49-40-8119377 F +49-421-5905-4815 <u>Hans-Martin.Niemeier@hs-bremen.de</u>

Eric Njoya University of Applied Sciences, Werderstr. 73, D 28199 Bremen / Germany P: +49-421-5905-4283 e_njoya@gmx.de

The growth of air traffic demand has posed the question how can we best assess whether a country gains or loses from airport investments. This paper analyses different methods like Cost Benefit Analysis, Economic Impact Analysis and Computable General Equilibrium models to address the question. The paper argues that Cost Benefit Analysis, and Computable General Equilibrium address the policy issue well and that both methods are rigorous, although improvements are possible, especially in the newer aspects of evaluation. Economic Impact Analysis does not address the problem satisfactorily and it misleads policy, though it is used extensively. The emphasis here is on the use of CGE models, which have only recently been applied to airport evaluation. However, there have been some significant studies, notably that done recently for the Airport Commission in London. A CGE approach has the advantage that it can measure general equilibrium effects, such the benefits of inbound tourism, which other techniques cannot. The paper discusses a number of issues to be resolved when using CGE models to evaluate airports.

Superannuation within a financial CGE model of the Australian economy

Peter B. Dixon, James. A. Giesecke, Maureen T. Rimmer Centre of Policy Studies, Victoria University

Australia's superannuation sector has become both a major institution in guiding the allocation of the nation's financial capital across asset classes, regions, and sectors, and a central intermediary in channelling the nation's annual savings into domestic capital formation and foreign financial asset accumulation. To put the industry's scale in context, in 2012 the sector had assets under management of approximately \$1.4tn (Australia's GDP in the same year was approximately \$1.5tn). Annual inflows to the system represent approximately one third of gross national savings. The sector's influence over the allocation of the nation's physical and financial assets is forecast to continue to grow. We model this important institution within an economy-wide setting by embedding explicit modelling of the sector within a model of the financial sector which is in turn linked to a dynamic multi-sectoral CGE model of the real side of the economy. We develop the financial CGE model by building on a multi-sectoral dynamic model of the real side of the Australian economy. In particular, we introduce explicit treatment of: (i) financial intermediaries and the agents with which they transact; (ii) financial instruments describing assets and liabilities; (iii) the financial flows related to these instruments; (iv) rates of return on individual assets and liabilities; and (v) links between the real and monetary sides of the economy. We explore the effects of the superannuation sector by simulating a one percentage point increase in the ratio of superannuation contributions to the economy-wide nominal wage bill.

Implementing a stylised inter-temporal dynamic CGE model in GEMPACK.

Liangyue Cao, Commonwealth Department of Treasury, Australia

A stylised inter-temporal CGE model will be described, where a representative firm chooses investment and production by maximising its lifetime market value subject to the capital stock accumulation constraint with adjustment cost of investment; and a representative household chooses its consumption and leisure by maximising the lifetime utility subject to its wealth constraint with income from supplying labour, return from holding firm's equity and foreign bonds. The model is then fully calibrated. After that, the model is implemented in GEMPACK using WINGEM. Finally, homogeneity tests are undertaken to ensure that the model displays the basic properties. Some hypothetic scenarios with temporary shocks are then simulated and the presentation will show some of the simulation results. It is found that the inter-temporal nature of the model provides very rich dynamic behaviour including transitional behaviour of economic variables such as GDP, capital stock, consumption, trade balance and leisure.

A decade and more of modelling regional Australia with TERM

Glyn Wittwer Centre of Policy Studies, Victoria University

Mark Horridge devised the TERM approach to CGE modelling. Previous efforts at sub-national regional modelling overemphasised regional IO tables and (virtually non-existent) inter-regional trade data. The Australian version of TERM has been used in over 70 consulting projects at CoPS over the past 12 years. The variety of projects undertaken reflects the versatility of the model and the importance of disaggregating the national IO table before splitting it into regions. The mining boom and water issues are among important topics analysed using TERM.

Japan's Oligopolies: Potential Gains from Third Arrow Reforms

CGE Workshop CoPS, Victoria University, Melbourne, Australia 10 August 2015

> Akihito Asano (Sophia University) Rod Tyers (UWA and ANU)

Three Arrow Reforms

First arrow (bold monetary policy)

A price stability target (2% inflation) [2013 January] Unconventional monetary policy

Second arrow ("flexible" fiscal policy)

Economic stimulus packages – temporary fiscal expansions (16 trillion Yen in 2013)

Tax reforms to address government LR debt accumulation

Third arrow ("structural" economic reforms)

Labour market – participation rates, immigration, flexibility Company tax reductions Robotics research Competition reform

	L	Jata	
		Sector name	number of firms
	1	Agriculture	10
	2	Fishing	6
Nikkei NFFDS	3	Mining, Minerals	24
	4	Energy	12
FinancialQUEST	5	Processed agricultural products	102
. 2004 . 2014	6	Electronic equipment	69
• 2004 – 2014	7	Transport equipment	81
financial	8	Chemical, Rubber	248
statomonts	9	Textiles, Clothing	48
statements,	10	Metal	146
market	11	Other manufacture	496
canitalisation	12	Electricity	12
Capitalisation	13	Gas	10
• 2776 firms	14	Communications	23
	15	Financial	215
organised into	16	Transport	114
20 sectors.	17	Construction	140
	18	Business services	82
	19	Recreation	504
	20	Other services	434

Pure profits and corporate saving Pure (economic) profits Market capitalisation, K Net firm debt, d Earnings after depreciation but including tax and interest, E Gross rate of return, $r=E/(K_{t-1}+d_{t-1})$ Gross firm debt, D Interest expenses, I Market rate of return facing firm, $r_M = I/D$ Pure profit,* $\pi = (K_{t-1} + d_{t-1})(r - r_M)$ **Corporate saving (retained earnings)** Earnings after depreciation but including tax and interest, E Interest expenses, I Dividend payments, H Company tax payments, T Corporate saving, $S_c = E - (T + I + H)$

*Part of the $(r-r_M)$ gap is a risk-driven equity premium, though our estimates of this are small given observed variability 2004-2014.

The modelling

- 20 sector CGE model of the Japanese economy, with oligopoly behaviour on prices with differentiated varieties
- Each firm carries a recurrent fixed L and K costs
- Taxes are levied separately on *L* and *K* income, *C*, *M* and *X*
- The capital account is open, driven by endogenous S and I
- Home assets differentiated from foreign with financial flows motivated fairly elastic to departures from interest parity
- Fixed household and industry-specific corporate saving rates

Closure alternatives

Short run

Capital use fixed by industry so r_i endogenous

Fiscal policy $S_G = T - (G_X + G_T)$, G_T / P_C constant so G_X changes

Real production wage fixed, production *L* endogenous

Oligopoly - fixed *n*, endogenous π

Long run

Capital internationally and sectorally mobile at a r_W

Fiscal policy $S_G = T - (G_X + G_T)$, G_T / P_C constant so G_X changes

Employment of all primary factors fixed

Oligopoly - fixed n, endogenous π

Free entry, exit - n endogenous, π exogenous

23

Modelling Results

Expanding production and professional labour Scale gains raise efficiency, attract *I*, *K* No significant real wage loss

Tax switch τ_{κ} (-5%) to τ_{c} (8%) Reduced capital tax rate attracts *I*, *K* But *GNP/Pc* falls due to higher τ_{c}

Tax switch, reduced s_c (-40%) Reduced capital tax rate attracts *I*, *K* Reduced S_c raises *C*, *T* so τ_c rises less (2%) Rentiers gain (after tax) but least

bacebalance
consistent of the price of

Conclusions

Labour supply is expansionary without impairing real production and professional wages

Company to consumption tax switch is expansionary and, combined with reduced corporate saving, is Pareto improving

Competition policy and regulation reforms yield large gains, though rentiers gain least

Overall performance is very sensitive to services productivity

There is potential for a major 3rd Arrow driven recovery

Annexures

Japan's lost decades

1990s and 2000s

Stagnation (average real GDP growth per year = 0.7%) Deflation (average GDP deflator = -0.7%) Unemployment rate rose 2.1% to 5.1% (peaking at 5.36% in 2002) Gross government debt expands to 200% GDP 15 different prime ministers

Third arrow reforms in more detail

Labour:

Enhancing women's participation and advancement Sourcing high-skilled human resources from overseas Enable flexible working practices

Stimulate innovation in the "robotics revolution"

Private sector structural reform:

Lower corporate tax, venture business promotion Electricity: nationwide grid, liberalising retail, legal separation between generators and distributors Agricultural policy: rice production regulation, dairy

distribution Health: investments in improved services

28

27

Three Arrow Reforms Thus Far

Major depreciation of the Yen

Growth rate

- Real GDP growth rate in FY2013 = 2.3%
- Slowed down again in 2014 [GST increased from 5% to 8% in April 2014]

Labour market

- Number of employees has been increasing
- Unemployment rate has fallen [3.5% in Dec 2014]

Consumer price

• CPI growth in 2014 = 2.7%

Stock price

• Stock prices have been on the rise [around 70% rise in Nikkei225 since the end of 2012]

Landslide snap election victory in December 2014

29

Simulation results Labour market reforms			
% change relative to baseline due to: 5% increase in prodn and professional labour	Oligopoly Short run	Oligopoly Long run	Free entry and exit
Real output, GDP/P _y	2.9	5.6	4.2
Real income, GNP/P _c	2.7	5.1	4.0
Real production wage, W/P_c	0.00	-0.39	0.53
Real skilled wage, W_s/P_c	-3.1	-0.51	0.59
Gross rate of return on K, r_c	4.3	2.8	-3.0
Real exchange rate, e_{R}	0.19	-0.98	-0.73
Number of firms, n	0.00	0.00	14.7
Average scale (relative to MES), s	3.2	5.2	-6.3
Summary of paper Table 7.			

Modelling Approach

- BRUGEM, a large recursive dynamic CGE model for Brunei economy based on ORANIG-RD.
- 74 industries, 74 commodities, 3 primary factors, 5 economic agents, 7 margins services and 2 sources of supply.
- Solved sequentially on year-to-year basis using Euler 100-steps* solution method in GEMPACK.
- Optimising behaviour of agents, zero pure profit and market clearing conditions.

Scenario 2

- Some diversification efforts
- Oil and gas sectors given negative shocks from 2012 till 2040 (smaller shock from 2026-2040)
- Eight selected industries stimulated : MethanolPChm, CokePetroPrd, ChemPhrmRbrP, BldgConstruc, CvlEngConstr, SpecConstr, ArcEngTchSrv and PubAdmDfnSoc
- To replace half of lost hydrocarbons output
- Decline of TextilesAppL sector

- 3. The "BROWN BAG" SEMINAR OF THE ECONOMICS AND POLICY ANALYSIS PROGRAM, GRIFFITH BUSINESS SCHOOL (BRISBANE)
- 4. Australian Conference of Economists (ACE 2015), Economic Challenges Today: Answers from theory and Practice (QUT-Brisbane)

Methodol	ogy: Policy Simulation		15					
Sho	cks							
	SR	LR						
S1: Fertilizer subsidy (20%)	Fertilizer subsidy: 20% reduce Land Productivity al: 3.4 % reduce	Fertilizer subsidy: 20% reduce Land Productivity all: 3.4 % reduce						
<mark>S2: Irrigation</mark> development in Northern	Fertilizer subsidy: 20% reduce Land Productivity all: 3.4 % reduce Govt. demand for construction in Northern - increased by X, X= 20% of subsidy	Fertilizer subsidy: 20% Land productivity all: 3 Paddy land productivit increase	veduce .4 % reduce y Northern: 5 %					
S2.2: Irrigation development in Eastern	Fertilizer subsidy: 20% reduce Land Productivity all: 3.4 % reduce Govt. demand for construction in Eastern- increased by X, X=20% of subsidy	Fertilizer subsidy: 20% Land productivity all: 3 Paddy land productivit increase	o reduce .4 % reduce y Eastern: 5 %					
S2.3: Fertilizer subsidy: 20% reduce Fertilizer subsidy: 20% reduce Fisheries Land Productivity all: 3.4 % reduce Fertilizer subsidy: 20% reduce habour Govt. demand for construction in Northern Out put of fisheries sector in Northern: in Northern - increased by X, X=20% of subsidy 40 % increase								
NB. 1. We assumed that fertilizer subsidy is not re-established within our long run period. 2. Values of the shocks were calculated based on <u>Wijetunga et al., 2008</u> , <u>Hussain et al., 2007</u> and proposed costs & benefits of the projects by planning ministry of Sri Lanka								

Methodol	ogy: Policy Simulation	ı∭, Griffith	16								
Sho	CKS - (considered in policy interpretation	n)									
	SR	LF	1								
- <mark>S1:</mark> Fertilizer subsidy (20%)	Fertilizer subsidy: 20% increase Land Productivity all: 3.4 % increase	Fertilizer subsidy: 20% Increase Land Productivity all: 3.4 % increas									
<mark>S2-S1:</mark> Irrigation development in Northern	Fertilizer subsidy - 20% reduce Land Productivity all -3.4 % reduce Govt. demand for construction in Northern - increased by X, X=20% of subsidy	Fertilizer subsidy - 209 Land productivity all - Paddy land productivit increase	% reduce 3.4 % reduce y Northern: 5 %								
S2.2-S1: Irrigation development in Eastern	Fertilizer subsidy - 20% reduce Land Productivity all -3.4 % reduce Govt. demand for construction in Eastern- increased by X, X=20% of subsidy	Fertilizer subsidy - 209 Land productivity all -3 Paddy land productivit increase	<mark>% reduce</mark> }.4 % reduce y Eastern: 5 %								
S2.3-S1: Fisheries habour development in Northern	Fertilizer subsidy - 20% reduce Land Productivity all -3.4 % reduce Govt. demand for construction in Northern - increased by X, X=20% of subsidy	Fertilizer subsidy – 20% Land productivity all –3 Out put of fisheries se 40 % increase	% reduce 8 .4 % reduce ctor in Northern:								
NB. 1. We assume 2. Values of the sh the projects by pla	<i>NB. 1. We assumed that fertilizer subsidy is not re-established within our long run period.</i> 2. Values of the shocks were calculated based on <u>Wijetunga et al., 2008</u> , <u>Hussain et al., 2007</u> and proposed costs & benefits of the projects by planning ministry of Sri Lanka										

Μ	ethodology	7				23
	Structure of E	Ecor	iomy	at base level		
	Sector	share	Cumulative	Sector	share	Cumulative
	1 Trade and Repair Work	16.32%	16.32%	23 Other Transportable Goods	1.06%	84.63%
	2 Land Transport	10.56%	26.88%	24 Other Chemical Products	1.02%	85.65%
	3 Construction Service	8.24%	35.12%	25 Tobacco Products	0.94%	86.59%
	4 Financial Intermediation	8.21%	43.33%	26 Dairy Products	0.92%	87.51%
	5 Public Administration and Defence	7.43%	50.76%	27 Non-metallic Mineral Products n.e.c.	0.91%	88.42%
	6 Real Estate Activities	3.57%	54.33%	28 Other Agriculture and Hunting	0.88%	89.30%
	7 Wearing apparel, except fur	3.19%	57.52%	29 ^{Tea}	0.78%	90.08%
	8 Meat and processed Fish, Fruit & Veg.	2.80%	60.32%	30 Supporting and Auxiliary Transport	0.78%	90.86%
	9 Other Vegetables	2.66%	62.98%	31 Processes Rice	0.74%	91.60%
1	0 Other food products Beverages	2.49%	65.47%	32 Health and Social Services	0.71%	92.31%
1	1 Electricity	2.48%	67.95%	33 Water Transport	0.70%	93.01%
1	2 Education	2.14%	70.09%	34 Air Transport	0.68%	93.69%
1	3 Refined Petroleum Products	2.09%	72.18%	35 Insurance and Pension Funding	0.68%	94.37%
1	4 Mining and Quarrying	1.71%	73.89%	36 Rubber (natural)	0.66%	95.03%
1	5 Paddy	1.42%	75.31%	37 Other Cereals	0.58%	95.61%
1	6 Fish (Inland and Marine)	1.34%	76.65%	38 Hotels and Restaurants	0.54%	96.15%
1	7 Tea Leaves	1.27%	77.92%	39 Firewood (in logs and billets)	0.54%	96.69%
1	8 Other Services	1.24%	79.16%	40 Basic Chemicals	0.46%	97.15%
1	9 Live Animal (for meat and draft)	1.12%	80.28%	41 Knitted and Crocheted Fabrics	0.36%	97.51%
2	0 Electrical Machinery and Apparatus	1.12%	81.40%	42 Rubber Products	0.35%	97.86%
2	Coconut	1.10%	82.50%	43 Other Beverages and Spice	0.35%	98.21%
2	2 Post and Telecommunications	1.07%	83.57%	44 Plastics Products	0.26%	98.47%

						NIVERSI	TY TY	
tiona	I Ma	cro I	mpa	acts				
		Shor	t Run			Long	Run	
	Place Neutral		Place based	Ļ	Place Neutral		Place base	d
	Fert sub	North Irri.	East Irri.	No. F.Hab	Fert sub	North Irri.	East Irri.	No. F.Hab
Real GDP	0.139	0.051	0.051	0.051	0.054	0.007	0.010	0.09
Ag. Emp.	0.221	0.101	0.100	0.101		Exoge	enous	
Real Wage		Exog	enous		0.216	0.019	0.030	0.14
Ag. Capital		Exog	enous		0.110	0.011	0.015	0.05
Ag. HH Con	0.225	0.101	0.086	0.101	0.097	-0.048	-0.045	0.04
Ag. Invest.		Exog	enous		0.108	0.015	0.021	0.13
Ag. Govt.	Exogenous	0.500	0.503	0.500		Exoge	enous	
R. exports	0.083	-0.182	-0.153	-0.182	-0.008	-0.001	-0.001	0.10
R. Imports	0.102	0.123	0.120	0.123	0.037	0.005	0.008	0.07
СРІ	-0.021	0.089	0.073	0.089	-0.063	-0.006	-0.009	-0.03
GDPPI	-0.049	0.104	0.090	0.104	-0.043	-0.004	-0.006	-0.02
E-mark DI	0.010	0.039	0.033	0.039	-0.007	0 000	-0.001	-0.07

Res		27							
BOTE – Decomposition: National GDP (Expenditure) (With our place neutral and place based policy 1) Y = C + I + G + In + (X - M)									
		(C) Household Consumption	(I) Investments	(G) Government consumption	(In) Stocks	(X) Exports	(M) Imports	(Y) GDP	
	Share in Base case (1)	0.648	0.258	0.167	0.014	0.285	-0.372	1.000	
With Place	% change with simulation (2)	0.224	0.000	0.000	0.591	0.082	0.101	0.139	
Neutral Policy	contribution to % change in GDP (1) X (2)	0.145	0.000	0.000	0.008	0.023	-0.038	0.139	
With Place	% change with simulation (3)	0.101	0.000	0.500	-5.806	0.102	0.123	0.051	
Neutral Policy	contribution to % change in GDP (1) X (3)	0.066	0.000	0.084	-0.081	0.029	-0.046	0.051	

Results	•			L		ith SITY	29				
BOTE –	BOTE – Decomposition: Regional GDP (Income)										
(With our place neutral policy)											
v= SK * K	v= SK * K +SL * L +SN * N + a + tax										
NB: All values	indicate th	ie % contribi	ution of the	variable to cl	nange in nati	onal GDP					
	(SN * N) Land	(<mark>SL * L)</mark> Labour	(SK * K) Capital	<mark>(a)</mark> Ind	<mark>(tax)</mark> PRODTAX	<mark>(tax)</mark> ComTax	(y) Total GDP				
Western	0	0.033	0	0.001	0	0.003	0.036				
Southern	0	0.011	0	0.003	-0.001	0.001	0.014				
Sabaragamuwa	0	0.007	0	0.001	0	0.001	0.009				
Central	0	0.011	0	0.001	0	0.001	0.013				
Uva	0	0.007	0	0.002	0	0.001	0.009				
Eastern	0	0.009	0	0.004	-0.001	0.001	0.012				
NorthWestern	0	0.013	0	0.004	-0.001	0.001	0.017				
NorthCentral	0	0.014	0	0.007	-0.002	0.001	0.021				
Northern	0	0.005	0	0.002	-0.001	0	0.007				
Total	0	0 11	0	0.026	-0.007	0.01	0 139				

Resu	Its					L)		fith RSITY		30
BOT	BOTE – Decomposition: Regional GDP (Expenditure)									
Yr = NB: All	Yr = Cr + Ir + Gr + Inr + (X - M)r + (RX-RM)r + net Mar NB: All values indicate the % contribution of the variable to change in national GDP									
	HOU	INV	GOV	STOCKS	EXP	IMPORTS	REXPORTS	RIMPORTS	NETMAR	Total
Western	0.150	-0.024	0.000	0.177	0.081	0.102	0.161	0.197	0.055	0.080
Western Southern	0.150	-0.024 -0.015	0.000	0.177	0.081	0.102	0.161 0.115	0.197 0.110	0.055	0.080 0.135
Western Southern Sabaragamuwa	0.150 0.201 0.240	-0.024 -0.015 0.009	0.000 0.000 0.000	0.177 0.544 0.522	0.081 0.000 0.000	0.102 0.000 0.000	0.161 0.115 0.139	0.197 0.110 0.154	0.055 0.197 0.053	0.080 0.135 0.149
Western Southern Sabaragamuwa Central	0.150 0.201 0.240 0.216	-0.024 -0.015 0.009 0.016	0.000 0.000 0.000 0.000	0.177 0.544 0.522 0.385	0.081 0.000 0.000 0.000	0.102 0.000 0.000 0.000	0.161 0.115 0.139 0.134	0.197 0.110 0.154 0.133	0.055 0.197 0.053 0.059	0.080 0.135 0.149 0.131
Western Southern Sabaragamuwa Central Uva	0.150 0.201 0.240 0.216 0.302	-0.024 -0.015 0.009 0.016 0.042	0.000 0.000 0.000 0.000 0.000	0.177 0.544 0.522 0.385 0.707	0.081 0.000 0.000 0.000 0.000	0.102 0.000 0.000 0.000 0.000	0.161 0.115 0.139 0.134 0.168	0.197 0.110 0.154 0.133 0.180	0.055 0.197 0.053 0.059 -0.009	0.080 0.135 0.149 0.131 0.193
Western Southern Sabaragamuwa Central Uva Eastern	0.150 0.201 0.240 0.216 0.302 0.262	-0.024 -0.015 0.009 0.016 0.042 0.003	0.000 0.000 0.000 0.000 0.000 0.000	0.177 0.544 0.522 0.385 0.707 1.068	0.081 0.000 0.000 0.000 0.000 1.003	0.102 0.000 0.000 0.000 0.000 -0.350	0.161 0.115 0.139 0.134 0.168 0.267	0.197 0.110 0.154 0.133 0.180 0.180	0.055 0.197 0.053 0.059 -0.009 -0.027	0.080 0.135 0.149 0.131 0.193 0.209
Western Southern Sabaragamuwa Central Uva Eastern NorthWestern	0.150 0.201 0.240 0.216 0.302 0.262 0.285	-0.024 -0.015 0.009 0.016 0.042 0.003 0.020	0.000 0.000 0.000 0.000 0.000 0.000	0.177 0.544 0.522 0.385 0.707 1.068 0.764	0.081 0.000 0.000 0.000 0.000 1.003 0.000	0.102 0.000 0.000 0.000 0.000 -0.350 0.000	0.161 0.115 0.139 0.134 0.168 0.267 0.146	0.197 0.110 0.154 0.133 0.180 0.130 0.130	0.055 0.197 0.053 0.059 -0.009 -0.027 0.103	0.080 0.135 0.149 0.131 0.193 0.209 0.188
Western Southern Sabaragamuwa Central Uva Eastern NorthWestern NorthCentral	0.150 0.201 0.240 0.216 0.302 0.262 0.285 0.559	-0.024 -0.015 0.009 0.016 0.042 0.003 0.020 0.106	0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.177 0.544 0.522 0.385 0.707 1.068 0.764 1.299	0.081 0.000 0.000 0.000 1.003 0.000 0.000	0.102 0.000 0.000 0.000 -0.350 0.000 0.000	0.161 0.115 0.139 0.134 0.168 0.267 0.146 0.497	0.197 0.110 0.154 0.133 0.180 0.130 0.130 0.159 0.376	0.055 0.197 0.053 0.059 -0.009 -0.027 0.103 -1.092	0.080 0.135 0.149 0.131 0.193 0.209 0.188 0.425
Western Southern Sabaragamuwa Central Uva Eastern NorthWestern NorthCentral Northern	0.150 0.201 0.240 0.216 0.302 0.262 0.285 0.559 0.262	-0.024 -0.015 0.009 0.016 0.042 0.003 0.020 0.106 0.017	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.177 0.544 0.522 0.385 0.707 1.068 0.764 1.299 0.810	0.081 0.000 0.000 0.000 1.003 0.000 0.000 0.000	0.102 0.000 0.000 0.000 -0.350 0.000 0.000 0.000	0.161 0.115 0.139 0.134 0.168 0.267 0.146 0.497 0.215	0.197 0.110 0.154 0.133 0.180 0.130 0.159 0.376 0.131	0.055 0.197 0.053 0.059 -0.009 -0.027 0.103 -1.092 0.118	0.080 0.135 0.149 0.131 0.193 0.209 0.188 0.425 0.195

Re												31
В	BOTE – Decomposition: Industry contribution to GDP											
		— (With c	ur place r	eutral	nolicy)							
NE	3: All values in	dicate the	% contribu	ition of	the va	riable t	o chan	ge in n	ational	GDP		
	T		0	Sabara-	0		F	North	North		T . I . I	0
	TempCoeff	vvestern	Southern	gamuwa	Central	0.009	Eastern	vvestern	Central	Northern	1 OTAI	Cumulative
	1 naddy	0.033	0.013	0.008	0.012	0.008	0.012	0.016	0.020	0.007	0.129	18%
	2 trade	0.005	0.002	0.002	0.002	0.001	0.001	0.003	0.002	0.000	0.019	33%
	3 finance	0.009	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.015	45%
	4r_mil	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.004	0.001	0.015	57%
	5L trans	0.003	0.001	0.001	0.002	0.001	0.001	0.002	0.002	0.001	0.012	66%
	6r_est	0.007	0.001	0.000	0.001	0.000	0.000	0.001	0.001	0.000	0.011	75%
	7 f_be_nec	0.003	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.001	0.009	82%
	8 constr	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.001	0.000	0.004	85%
	9r_petro	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003	87%
1	0 electicity	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.003	89%
1	1 vege	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	91%
1	2pro_f_v	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	93%
1	3tea_lvs	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	94%
1	4tea	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	94%
1	5 tobac	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	95%
1	6 apparel	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	96%
1	7coco	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	96%
1	8 insura	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	96%
1	9postal	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	97%
2	0serv_nec	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	97%

Res	sults							Grif UNIVE	fith RSITY			32
B	30TE – Decomposition: Industry contribution to GDP											
_		()				, irrigat	ion do	volonm	ontin	Jorthou	(2)	
			bur place L	laseu p	Joincy I	. imgai	ion de	velopin	ientin i	vortnei	n) –	
NB	: All values indic	ate the	% contribu	ution of	the va	riable t	o chan	ge in n	ational	GDP		
				Sabara-				North	North			
	TempCoeff	Western	Southern	gamuwa	Central	Uva	Eastern	Western	Central	Northern	Total	Cumulative
	Total	-0.0012	0.0008	0.0002	0.0016	0.0007	0.0012	0.0013	0.0019	0.0441	0.0504	
1	constr	-0.0006	-0.00003	0.0000	-0.0001	0.0000	0.0004	-0.0001	0.0001	0.0350	0.0347	49%
2	finance	0.0030	0.0003	0.0002	0.0004	0.0002	0.0003	0.0004	0.0004	0.0021	0.0073	60%
3	r_est	0.0034	0.0003	0.0002	0.0003	0.0001	0.0002	0.0003	0.0003	0.0011	0.0063	69%
4	trade	-0.0017	0.0005	0.0002	0.0005	0.0002	0.0003	0.0010	0.0007	0.0025	0.0041	74%
5	L_trans	0.0005	0.0002	0.0001	0.0003	0.0001	0.0001	0.0002	0.0003	0.0023	0.0041	80%
6	electicity	0.0003	0.0001	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000	0.0001	0.0010	82%
7	vege	0.0000	0.0001	0.0000	0.0002	0.0002	0.0000	0.0001	0.0001	0.0003	0.0009	83%
8	f_be_nec	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0003	0.0006	84%
9	tobac	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0005	84%
10	r_petro	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	85%
11	wood	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	85%
12	f_wood	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	85%
13	educa	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	85%
14	gla_pro	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0001	85%
15	сосо	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	86%
16	water	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	86%
17	health	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86%
18	insura	-0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000	86%
19	potato	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86%
20	paddy	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86%

F	Results			ffith ERSITY	34
	Impact of selected polic	ies on regio	onal dispa	rity	
		In Shor	t Run	In Lon	g Run
	Policy	value	% change	value	% change
		0.33842		0.33842	
	Place-neutral Policy - Uniform fertilizer subsidy (as at 2011)	0.33789	-0.157	0.33744	-0.290
	Place-based Policy - Region 1 Irrigation project in North (reduced subsidy in all regions)	0.33785	-0.168	0.33833	-0.028
	Place-based Policy - Region 2 Irrigation project in East (reduced subsidy in all regions)	0.33787	-0.164	0.33827	-0.044
	Place-based Policy - Region 1 Fisheries Habour project in North (reduced subsidy in all regions)	0.33785	-0.168	0.33749	-0.274
۶	Regional disparity reduction higher in short run but not in	impact of <i>plac</i> long run	ce-based pol	icy is comp	paratively

35

Results

Summary - Impact of selected policies (Preliminary Results)

	In Sho	rt Run	In Long Run		
Policy	National GDP Regional Disparity Index		National GDP	Regional Disparity Index	
Place-neutral Policy - Uniform fertilizer subsidy (as at 2011)	0.140	-0.157	0.054	-0.290	
Place-based Policy - Region 1 Irrigation project in North (reduced subsidy in all regions)	0.051	-0.168	0.007	-0.028	
Place-based Policy - Region 2 Irrigation project in East (reduced subsidy in all regions)	0.051	-0.164	0.010	-0.044	
Place-based Policy - Region 1 Fisheries Habour project in North (reduced subsidy in all regions)	0.051	-0.168	0.097	-0.274	

Note: we assumed that Fertilizer subsidy was not reestablished during our long run simulation period. The money saved by the government was kept as a budget surplus

Growth- and Employment-oriented Fiscal Expenditures in South Korea

10 August 2015

Sang-Ho Nam KIHASA

I. Introduction

- S. Korea is experiencing low fertility and rapid aging
- Persistent increase in social welfare expenditures
- Need to promote growth and expand employment
- CGE model is a useful tool to analyze the effects of government ex penditures on economic growth and employment
 - ✓ Useful in determining the composition of public expenditures

I. Introduction (2)

- standard ORANI-G model is employed to analyze the effects of go vernment expenditures
 - ✓ a version of CGE model with Social Accounting Matrix is selected (M . Horridge and E. Corong 2012)
- '2009' is the most recent available data for South Korea (as of August 2014)
 - ✓ Input-Output and National Income Statistics follow UN's SNA 1993
 - ✓ for the year 2010, detailed investment data by sector were not availa ble

I. Introduction (3)

• The aim of this paper are:

- ✓ Apply a CGE model for the analysis of growth and employment effect s of government expenditure
- ✓ Perform pre-eminent analysis of government expenditures
- \checkmark Propose policy recommendations for the growth and employment

II. Model and Database

- Standard ORANI model with 2009 SAM in South Korea
- Production structure, Intermediate inputs, Investment demands, and households demand follows prototype ORANI-G model

✓utility maximization, etc.

II. Model and Database (2)

- 2009 Input-Output Table and the National Accounts data compile d by the Bank of Korea was employed as a base data for the CGE model
 - Tax table is obtained by combining producers price and basic price ta bles of Input-Output tables
- Other information used
 - ✓ Household Income Dynamics Survey (Statistics Korea)

II. Model and Database (3)

Base Data for CGE model in 2009
 ✓ Link Excel sheet for macro SAM here [link]

II. Model and Database (4)

- Columns of SAM represents expenditures, whereas rows represent s receipts
- Row sum must be equal to column sum (i.e., receipts = expenditu res) due to double book-keeping
- Account names for 2009 SAM:
 - ✓ 1 Firm, 2 DomCom, 3 ImpCom, 4 Labor, 5 Capital, 6 ProdTax, 7 Com Tax, 8 Tariff, 9 DirTax, 10 Households 11 Enterprises, 12 GovCurrent , 13 GovInvest, 14 PrvInvest, 15 Stocks, 16 ROW

II. Model and Database (5)

- Originally, there are 28 activities (commodities), but

 ✓ 26th industry (Education and Health) is divided into Education sector
 Health sector, and Social security sector
- Thus the total number of industries become 30!
 - ✓C1 Agric, C2 Coal, Oil, Gas, and Mining, C3 Food and Beverages, C4 T extiles and Leather, (so on) C24 Real Estate Services, C25 Public Ad ministration and National Defense, C26 Education, C27 Health, C28 Social Security, C29, Other Social services, C30 NEC
- Social Security occupies 6.08% in total production, and 12.8% in employment

III. Scenarios

- Investigate the growth and employment effects of government con sumption expenditures of 1 Trillion Won
 - ✓ standard short-run closures of ORANI model
- Type of expenditures are: public administration & national defense, education, health, and social security)
 - ✓ Scenario 1: Expend. of 1 Trillion Won on Pub. Admin.
 - ✓ Scenario 2: Expend. of 1 Trillion Won on Education
 - ✓ Scenario 3: Expend. of 1 Trillion Won on Health
 - ✓ Scenario 4: Expend. of 1 Trillion Won on Social Security

III. Scenarios (2)

Gov't Consumption Expenditures in 2009

Sector	Name	Consumption (Trillion)	Share of 1 Trillion (%)
25	Pub Admin & Nat Defense	91.5	1.1%
26	Education	37.0	2.7%
27	Health	33.8	3.0%
28	Social Security	2.4	42.5%
Total		170.3	

IV. Simulation Results

real variables	Pub. Admin	Education	Health	Social Sec.
Real GDP	0.0632	0.0285	0.0155	0.0259
import(cif)	0.0017	-0.0025	0.0003	-0.0051
private consumption	-0.0781	-0.0383	-0.0853	-0.0725
Gov. curr. expenditure	0.4058	0.3381	0.3378	0.3225
gdp deflator	0.0066	-0.0006	-0.0124	-0.0167
(Nominal wage CPI)	-0.0154	-0.0012	-0.0141	-0.0153
Gov. balance	0.0066	-0.0006	-0.0124	-0.0167
Bud Surp/GDP	-0.0007	-0.0003	0.0000	-0.0001
employment	0.1438	0.0670	0.0392	0.0620

VI. Simulation Results (2)

- Increase in Gov. consumption Expenditure makes GDP and employment to increase.
- Real GDP and employment effects are largest in Public Admin., du e to the increase in private consumption
- Real GDP and employment effects are lowest in 'Health'

 This is due to the fact that 'Health' sector is more capital intensive
- Social security expenditure has the largest income redistribution e ffect (while 'Public Admin' is the worst!)

VI. Simulation Results (3)

Gov. expend. multipliers

Expenditure	% Change	GDP	Employment
On	In Gini	multiplier	multiplier
Social Security	-0.1606	0.5786	0.0186
Health	-0.1432	0.3475	0.0116
Education	-0.0221	0.6039	0.0191
Public Admin.	0.0208	0.6391	0.0199
VI. Simulation Results (4)

Policy priority

priority	Income distribution	Growth & employme nt	
I	Social security	Publicadmin.	
II	Health	Education	
III	Education	Socialsecurity	
IV	Publicadmin.	Health	

VII. Conclusion

- Analyzed the output and employment effects of gov. consumption expenditure with 2009 SAM for the S. Korea
- Public Administration & National Defense has the biggest real GD P increase.

 \checkmark Education is the second largest.

• Social Security expenditure is the most efficient in income re -distr ibution, and Health is the second.

VII. Conclusion (2)

- For the pre-eminent policy analysis, CGE modeling is a useful tool
- Policy makers should carefully design the policy options for the ex pansion of social expenditure
- Financing methods are also important determinants for the real a ctivity in the economy
- Need to use dynamic CGE model for longer-term analysis

Long Term Economic Growth Projections and Factor Shares

Warwick J. McKibbin Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, ANU & The Brookings Institution

Presentation to the National CGE Modeling Conference, Victoria University, 10 August 2015

<section-header><section-header><section-header><section-header><section-header><section-header><text>

Overview

- Methodologies for projecting Global Economic Growth
- Brief Survey of Major Global Models that produce Longer Term Projections
- The G-Cubed Model
- Projections From a Range of Models
- Some Implications for Future Factor Shares
- Summary and Conclusion

Key Points

- Extremely difficult to predict the next 50 years
- History contains many lessons for evaluating future scenarios
- Framework needs to be transparent so that key assumptions and sensitivities can be understood
- Relative prices and sectoral disaggregation are useful for capturing the changing composition of production and consumption

Key Points

- Changes in future Factor Shares depend critically on a range of assumptions but in particular on;
 - The elasticity of substitution between capital and labor which differs across sectors
 - The sectoral sources of economic growth

How to project the World in 2050?

- Many non model based studies project individual countries as islands
- But
 - global exports need to equal imports
 - global investment needs to be funded by global savings
- Models do this in a more consistent fashion

The Models

Table A1 Model Base Studies Surveyed

Projections	Reference		
SRES-MESSAGE	IPCC (2000)		
USDA	U.S. Department of Agriculture Economic Research Service projection, updated in 2011.		
EIA	U.S. Energy Information Administration, International Energy Outlook 2011, released in September 2011, Table A3, A4, A11.		
CEPII	Fouré, J. Bénassy-Quéré, A. and Fontagné, L. (2010)		
GS2011	GS2011: Wilson, D., Trivedi, K., Carlson, S. and Ursúa, J. (2011) GS2003: Wilson, D. and Purushothaman, R. (2003)		
OECD ENV-L	Chateau, J., C. Rebolledo and R. Dellink (2011),		
PWC	PWC2006: Hawksworth, J. (2006) PWC2008: PricewaterhouseCoopers (PWC) (2008) PWC2011: Hawksworth, J. and Tiwari, A. (2011)		
K2008	Klinov, V.G. (2008)		
DM2010	Duval, R. and de la Maisonneuve, C. (2010)		
JCER	Long term forecast team, Economic Research Department, Japan Center for Economic Research (2007)		
G-CUBED	McKibbin W. Morris, A. And Wilcoxen, P (2011)		


```
Y_{it} = K_{it}^{\alpha} (A_{it} H_{it})^{1-\alpha} = K_{it}^{\alpha} (A_{it} h_{it} L_{it})^{1-\alpha}
```

Sectoral hetrogeneity

• Some models model energy (CEPII)

 $Y_{it} = [(A_{it}K_{it}^{\alpha}L_{it}^{1-\alpha})^{\rho} + (B_{it}E_{it})^{\rho}]^{1/\rho}$

Sectoral Hetrogeneity

• Some models model production functions at the sectoral level and aggregate up.

Input assumptions

- Labor
 - Population growth
 - Labor supply
 - Labor force participation by sex
 - Detailed demographic adjustment by cohort
 - Human capital and education

Input assumptions

- Productivity Growth
 - Aggregate
 - Exogenous
 - Catchup model
 - Sectoral
 - Exogenous
 - Catchup model

Input assumptions

- Capital Accumulation
 - Based on available savings
 - Nationally or globally
 - Based on a simple accelerator model
 - Based on intertemporal optimization

G-Cubed Model

Many versions with different sectoral and country coverage

G-Cubed Model

- Developed by McKibbin and Wilcoxen since 1991
- Documented in *Handbook of CGE Modeling*, Chapter 17, North Holland
- Used for policy analysis and scenario planning by governments, international agencies, corporations, banks, and academic researchers.

- Firms produce output using capital, labor, energy and material inputs and maximize share market value subject to costs of adjusting physical capital.
- Households maximize expected utility subject to a wealth constraint and liquidity constraints.
- A mix of rational and non rational expectations.
- Short run unemployment possible due to wage stickiness based on labor institutions.
- Financial markets for bonds, equity, foreign exchange.
- International trade in goods, services and financial assets.

Role of substitution elasticity

- If factor are paid their marginal product and markets are competitive then
- If σ=1 factor shares are constant
- If σ>1 capital share rise as K/Y rises
 Labor share falls as K/Y rises
- If $\sigma < 1$ capital share falls as K/Y rises
 - Labor share rise as K/Y rises

01 electric utilities	0.2
02 gas utilities	0.8096
03 petroleum refining	0.5426
04 coal mining	1.703
05 crude oil extraction	0.4934
06 gas extraction	0.4934
07 mining	0.5
08 agriculture, forestry, fishing & hunting	1.283
09 durable manufacturing	0.4104
10 non-durable manufacturing	1.0044
11 transportation	0.5368
12 services	0.2556

Implication

- If share of sectors with σ>1 is large then uniform slowdown with tend to lower labor's income share economy wide
 - Agriculture with σ >1 ; most σ <1
- If share of sectors with σ>1 is small then a large fall in productivity growth in those sectors is required to get falling labor share across the economy

Conclusion

- Long term growth projections are difficult
- · Results are very sensitive to assumptions
- Given estimated elasticities of substitution for most sectors are less that unity it is likely that a slowdown in growth would raise the labour share of income unless agriculture is a dominant part of the economy

WWW.GCUBED.COM

Model equations: summary								
Eq'n	Short description	Size	Endo					
(1)	CES demand	IND*OCC	l_s(i,o)					
(2)	CET supply	OCC*SKILL	l(o,s)					
(3)	Market clearing (wage bill)	OCC	fw_s(o)		Ехо			
(4)	wage setting	OCC*SKILL	w(o,s)		ners os			
(5)	wage setting	IND*OCC	w_s(i,o)		pers_05			
(6)	labour units to persons	OCC*SKILL	pers(o,s)		skiiirat(s)			
(7)	Market clearing (persons)	OCC	f_pers(o)		l_os(i)			
(8)	persons by industry	IND*OCC	pers_s(i,o)		hpp			
(9)	aggregate persons	SKILL	b(s)					
(10)	aggregate persons	1	fskill					
(11)	ratio	SKILL	pers_o(s)					
VU.edu.au								

Economic Evaluation of Investments in Airports – Old and New Approaches

Peter Forsyth, Monash University and Southern Cross University Hans-Martin Niemeier, Bremen UAS, and Eric Njoya, Huddersfield University

> National CGE Workshop 10 August 2015

The Issue...

How can we best assess whether a country gains or loses from having a new airport or a new runway ?

The growing role of CGE models

Agenda

Background Traditional Technique- CBA Newer Technique- CGE Conclusions

Background

Types of Assessment Problems

- Does the country gain from investing in a new airport?
- A new runway for or terminal for an existing airport?
- Or, from subsidies to an airport?
- Or implementing a curfew at an airport?

The Three Techniques

- There has been a considerable use of three techniques of assessment-
 - 1. Cost Benefit Analysis (CBA)
 - 2. Economic Impact Analysis (EIA)
 - 3. Computable General Equilibrium (CGE) models
- All have been used in assessing Airports

Key Evaluation Question

- CBA long established, CGE new and evolving
- EIA used over last 30 or so years, CGE since about 2000
- Key issue: will the economy be better off as a result of making the airport investment?
- CBA answers this
- CGE can answer
- EIA, which is used a lot, cannot will not be discussed further

Analysing the Techniques- CBA

Airports-CBA

- UK Commission of the Third London Airport (Roskill), 1970
- Second Sydney Airport 1970s
- Several Bureau of Transport Economics studies
- A number of studies of large and small airports
- Recent Dept for Transport study for London (2003)
- Boris's airport for London

Old Issues with CBA

- Noise and local externalities
- Distribution (difficult to handle)
- Value of time (very important parameter)
- Airport pricing and congestion
- Unemployment (usually assume full employment or an arbitrary shadow wage)
- Land and accessibility
New Issues

- Measuring tourism benefits
- Wider economic benefits (WEBs) of air transport
- Benefits of connectivity- and aspect of WEBs
- Climate change externalities

Is CBA Sufficient?

- CBA does have limitations:
- Too partial equilibrium: obvious when measuring indirect effects, shadow pricing (theory says you should use a GE approach)
- Handling global emissions, such as greenhouse gas emissions
- Distributional effects- not sufficient to only measure immediate incidence
- Handling widely spread small effects, such as tourism benefits
- Employment effects: a problem with CGE but can go further than CBA

Analysing the techniques- CGE

Can Results from CBA and CGE be Compared?

- Many think not (esp. in Australia)
 - Output of a CBA is a measure of net benefit, or welfare
 - Outputs of a CGE model are measures of impact on the economy on variables such as GDP, Consumption, Employment etc
- I.e., "CGE models do not measure welfare, and results cannot be compared"
- To evaluate whether a country gains or loses from a change, a welfare measure is essential
- Sometimes people claim that measures such as GDP, or Consumption are a "rough measure of welfare"
- They aren't

CGE Models and Welfare

- CGE models can measure welfare
- They have demand systems, and can measure consumers surplus, producers surplus, tax changes etc
- A straightforward matter to include a welfare measure in the outputs of a CGE model (many models do)
- Can produce results in exactly the same metrics as CBA
- -in addition to a range of other useful results

Using CGE models to Evaluate Projects in Europe

- Quite common in Europe
- Esp. in transport
- Models used do have a welfare measure
- See Broecker and Mercenier, 2011, for a review- (no Australian studies mentioned-why?)
- B and M argue that CGE supersedes CBA for evaluation
- No need to assume perfect competition, that distribution does not matter, that there are no externalities etc.

Airports-CGE

- Assessment of Melbourne curfew (2003), Madden 2004
- Japan study Haneda expansion (2005)
- New runway for Brisbane (2007)
- Australian Regional Airports (2007)
- Subsidies to regional airports (Forsyth, 2007)
- New Sydney study (2012)
- Airports Commission UK (2013/2015)

Airports	ype of tudy	elfare Measure	E ternalities	ourism	Unemployme nt	evel of Disaggreg.	omments
Mel ourne 00 Madden 00	Impact of Curfew	no	no	implicit	flexible labour market	36	
ris ane 00	New Runway	no	no	implicit	flexible labour market	?	limited detail
ydney 01	Additional Airport	no	no	Not used for explicit evaluation	flexible labour market	58	
okyo aneda 005	New Runway	yes	no	implicit	fixed	?	spatial model
ondon 01 015	Multiple Investments a several airports	Yes?	no	No Tourism	Variable	23	spatial model
Airports in Australian Regions 01	Study of Benefits and Impacts of Subsidies	Yes	No	Tourism model	Fixed and Variable	50+	
Regional Airport u sidies 00	Evaluation of subsidies	yes	No	Explicit Tourism	Fixed and variable	50+	

Where CGE can Improve Evaluation of Airport Investments

- Welfare measurements not difficult, but many examples do not have them
- Capturing general equilibrium effects a key advantage of CGE
- Externalities and non market goods- CGE can handle global externalities well (eg greenhouse emissions)
- Tourism benefits- CGE models can measure these- partial CBA cannot
- Exploring employment effects- you don't have to assume full employment
- Analysing distribution
- Measuring wider economic benefits (WEBs)
- Validation- a useful check

Second Sydney Airport

- Two separate studies- a CBA, and a CGE- used to answer separate questions
- CBA- estimate net benefits of different sites
- CGE- estimate when the airport is worthwhile
- A missed opportunity---
- CGE results could have been used to estimate the benefits of inbound tourism in the CBA
- Instead, it was assumed that benefits were 25% of tourism expenditures (CGE estimates suggest 5-15% of expenditures- Aust, UK)
- And tourism benefits are about 40% of measured benefits in Sydney
- The *when* question was answered by a CGE study without any welfare measure

London Study 2015

- Published in July
- Additional runways for Heathrow or Gatwick airport
- Heathrow selected
- Data from a CBA plus other sources

Key Aspects

- Welfare –Some discussion, but GDP used as the "welfare" measure
- General Equilibrium estimated
- Tourism benefits- not counted; tourists regarded as residents
- Distribution- not measured
- Externalities- not measured, though CBA includes
- Employment- variable, but not analysed (makes the use of GDP questionable)
- Wider Economic Benefits (WEBs)- a BIG part of the impacts; measured using an econometric measure of how additional air travel increases productivity and inserted into the model

Conclusions

Conclusions and Further Work

- Limited number of examples of using CGE to evaluate airport investments, but becoming more accepted
- A CGE approach addresses a number of limitations of CBA
- Several studies have used quite small models
- To assess whether the investment leads to an economy which is better off, really need to have a welfare measure
- Full potential of CGE often not made use of (e.g., exploring employment effects, emissions estimates etc.)
- Measurement of WEBs is in its infancy- but this form of benefit is very large
- So far, no airport study has been very "spatial"
- E.g., could measure the value of time more accurately

National CGE Workshop, Centre of Policy Studies

An aspect of modelling the labour market in the VUMR model

10 August 2015

Productivity Commission

Some aspects to consider when modelling a labour market scenario in VUMR

- What is the footprint of directly affected workers?
- How to incorporate directly affected workers into the model's labour supply and labour demand nests?
- What are the key labour market parameter values?
 - How do they compare with the Australian literature?

Supply of labour across occupations & regions in VUMR varies with changes in competitiveness

Labour demand by occupation in VUMR varies with industry activity and competitiveness

Productivity Commission

What are the key labour market parameter values in VUMR?

	VUMR default	MONASH (Dixon et al 2010)
Labour demand		
Award/non-award substitution	n/a	2
Occupational substitution	0.35	0.35
Labour/capital substitution	0.5	0.15
Labour supply	\rightarrow	•
Award/non-award transformation	n/a	"high"
Move between industries	implicit	moderate
Occupational transformation	0.1	"little"
Interstate migration	1	n/a
Labour market adjustment: move out of unemployment	Returns to baseline after 5-7 years	"weak"
Productivity Commission		5

Focusing on the labour/capital substitution parameter in VUMR

- VUMR assumes a CES production function with CRS $Y=A[a_LL^p + a_KK^p]^{1/p}$ [in simplified form]
- Labour demand is given by firms minimising costs s.t. the production function $L=Ya_{L}^{1/(1-p)}[W/P_{ave}]^{-1/(1-p)}$
 - in log terms: $InL = \sigma.a + InY \sigma.In[W P_{ave}]$
 - in percentage change terms: $I = y \sigma(w p_{ave})$
- Labour-capital substitution elasticity, $\sigma = 1/(1-p)$
- How does the default parameter value of 0.5 in VUMR compare with the empirical literature?

Estimates in the Australian literature on employment

	One year or less	More than one year
Employment measured in	persons	
Daly et al (1998)	-2 to -5 (youth)	
Dungey & Pitchford (1998)		-0.4
Downes & Bernie (1999)	-0.3 to -0.4	-0.82
Lewis & MacDonald (2002)		-0.8
Dixon, Freebairn & Lim (2004)	-0.11	-0.32
Yuen & Mowbray (2009)	-0.2	-0.49
Hutchings & Kouparitsas (2012)		-0.40
Employment measured in	hours worked	
Debelle & Vickery (1998)	-0.21 (1978-97)	-0.4 (1978-97)
	-0.51 (1969-97)	-0.68 (1969-97)
Lewis & MacDonald (2002)		-0.9

Productivity Commission

But, what does the Australian empirical literature actually measure?

 Most studies estimate error correction models of the form

 $lnL_{t} = a + a_{0}[lnL_{t-1} - a_{1}ln(W/P)_{t} + a_{2}lnY_{t} + a_{3}t] + u_{t}$ employment real wage output time trend error term

- Based on a CES production function with CRS $Y=A[a_LL^p + a_KK^p]^{1/p}$
- Derived from the marginal productivity condition dL/dY = W/P
- This implies a₁ is labour-capital substitution elasticity

• and
$$a_1 = 1/(1-p) = \sigma$$
?

The VUMR labour-capital substitution elasticity is consistent with the empirical estimates

	Persons	Hours
All employment	0.3 to 0.6	0.4 to 0.7
All employment excluding public sector	0.8	
Range in empirical literature	0.3 to 0.8	0.4 to 0.7
Default VUMR		0.5

Productivity Commission

What does this imply for total employment responsiveness wrt average wages in VUMR?

	Scenario	Method	Year 1	Year 3	Year 10
Default VUMR	Average wage change	VUMR	-0.8	-1.1	-1.6
How does this com	pare with other studies?				
Lewis & MacDonald (2002)	Assumed 1:1 relationship between output and employment	ECM estimate	-0.8		
Downes & Bernie (1999)	Permanent reduction in NAIRU	TRYM	-1	-2.2	-4.8
Dixon & Rimmer (2000)	Award wage change	MONASH	-0.4	-0.5	-0.8
Dixon, Madden & Rimmer (2010)	Award wage change	MONASH	-0.5	-0.6	-1.2

Productivity Commission

Financial assets & liabilities by agent (Australia 2010, \$b.)(ABS 5232.0) Σ_tA(s,f,d)

Asset agent (d)		Control	Familian	C	Usuali	In durated			Life		
Liability agent (s)	Banks	Bank	ers	ment	olds	es	NBFI	Super ir	suranc e	NRH	RH
Banks	0	13	793	111	680	352	166	288	29	0	0
Central Bank	10	0	0	29	21	21	1	0	0	0	0
Foreigners	272	44	0	61	91	383	102	205	12	0	0
Government	86	19	188	0	282	24	28	24	12	0	0
Households	0	0	0	0	0	0	0	0	0	0	0
Industries	522	0	739	82	438	0	186	223	18	0	0
NBFI	217	5	153	40	120	75	0	190	158	0	0
Super	0	0	1	1	1170	0	1	0	0	0	0
Life insurance	2	0	9	0	63	0	3	161	0	0	0
NRH	633	0	19	21	1265	2	152	7	0	0	0
RH	518	0	62	17	316	2	124	6	٥	0	0

Centre of Policy Studies

Financial assets & liabilities by agent (Australia 2010, \$b.)(ABS 5232.0)

 $\Sigma_f A(s,f,d)$

Asset agent (d)		Control	Foreign	Covorn	Househ	Inductri			Life			
	Banks	Develo	oreign	Govern	libusen	muusun	NBFI	Super in	suranc	NRH	RH	
Liability agent (s)		вапк	ers	ment	olds	es			e			
Banks	0	13	793	111	680	352	166	288	29	0	0	
Central Bank	10	0	0	29	21	21	1	0	0	0	0	
Foreigners	272	44	0	61	91	383	102	205	12	0	0	
Government	86	19	188	0	282	24	28	24	12	0	0	
Households	0	0	0	0	0	0	0	0	0	0	0	
Industries	522	0	739	82	438	0	186	223	18	0	0	
NBFI	217	5	153	40	120	75	0	190	158	0	0	
Super	0	0	1	1	1170	0	1	0	0	0	0	
Life insurance	2	0	9	0	63	0	3	161	0	0	0	
NRH	633	0	19	21	1265	2	152	7	0	0	0	
RH	518	0	62	17	316	2	124	6	0	0	0	
				_/								
	Instrume	nt: \$	ib.	%								
	Bonds		0 0.0	0%								
	Cash		0 0.0)%								
	Deposits		4 0.3	3%								
	Equity	1,1	66 99.7	7%								
	Total	1,1	70 100	0%								
												_
entre of										VIC	TORI	A
licy Studies										UNI	VERSIT	1
, cladico									MEL	BOURNE	AUSTRAL	.17

Financial assets & liabilities by agent (Australia 2010, \$b.)(ABS 5232.0) $\Sigma_r A(s, f, d)$

Asset agent (d)	Banks	Central	Foreign	Govern	Househ	Industri	NBFI	Super	Life insuranc	NRH	RH
Liability agent (s)		Bank	ers	ment	olds	es		·	e		
Banks	0	13	793	111	680	352	166	288	29	0	0
Central Bank	10	0	0	29	21	21	1	0	0	0	0
Foreigners	272	44	0	61	91	383	102	205	12	0	0
Government	86	19	188	0	282	24	28	24	12	0	0
Households	0	0	0	0	0	0	0	0	0	0	0
Industries	522	0	739	82	438	0	186	223	18	0	0
NBFI	217	5	153	40	120	75	0	190	158	0	0
Super	0	0	1	1	1170	0	1	0	0	0	0
Life insurance	2	0	9	0	63	0	3	161	0	0	0
NRH	633	0	19	21	1265	2	152	7	0	0	0
RH	518	0	62	17	316	2	124	6	0	0	0
				_/							
	Instrume	nt:	\$b.	%							
	Bonds		0 0.0	0%							
	Cash		0 0.0	0%							
	Deposits		4 0.3	3%							
	Equity	1,	166 99.	7%							
	Total	1,	170 10	0%							
ntre of licy Studies									MEL		

			Σ	C _f A(s,f	,d)	NB:	Foreign 2%	asset all vs 19%	ocatior	1:	
Asset agent (d) Liability agent (s)	Banks	Central Bank	Foreign ers	Govern ment	Househ olds	Indústri es	NBFI	Super ins	Life suranc e	NRH	RH
Banks	0	13	793	111	680	352	166	288	29	0	(
Central Bank	10	0	0	29	21	21	1	0	0	0	(
Foreigners	272	44	0	61	91	383	102	205	12	0	(
Government	86	19	188	0	282	24	28	24	12	0	(
Households	0	0	0	0	0	0	0	0	0	0	(
Industries	522	0	739	82	438	0	186	223	18	0	(
NBFI	217	5	153	40	120	75	0	190	158	0	0
Super	0	0	1	1	1170	0	1	0	0	0	(
Life insurance	2	0	9	0	63	0	3	161	0	0	(
NRH	633	0	19	21	1265	2	152	7	0	0	(
RH	518	0	62	17	316	2	124	6	0	0	(
Asset a by liabi ROR se Governi from Go	agent d lity age nsitive: I ment, the	(e.g. h nt s to If rate of en asse	ouseho maximi f return o t agents	olds) m ise ber offered adjust	akes cl nefits su by Bank their pol	hoices a ubject to as rises r rtfolio sha	across a o availa elative to ares tow	bility of f bility of f arate of r ards Ban	strume Funds. eturn o k liabili	nt f issu ffered by ties & av	ied / vay

			Σ	C _f A(s,f,	d)						
Asset agent (d) Liability agent (s)	Banks	Central Bank	Foreign ers	Govern ment	Househ olds	Industri es	NBFI	Super ir	Life Isuranc e	NRH	RH
Banks	0	13	793	111	680	352	166	288	29	0	0
Central Bank	10	0	0	29	21	21	1	0	0	0	0
Foreigners	272	44	0	61	91	383	102	205	12	0	0
Government	86	19	188	0	282	24	28	24	12	0	0
Households	0	0	0	Û	Û	Û	Û	0	0	0	0
Industries	522	0	739	82	438	0	186	223	18	0	0
NBFI	217	5	153	40	120	75	0	190	158	0	0
Super	0	0	1	1	1170	0	1	0	0	0	0
Life insurance	2	0	9	0	63	0	3	161	0	0	0
NRH	633	0	19	21	1265	2	152	7	0	0	0
RH	518	0	62	17	316	2	124	6	0	0	0
Liability agent <i>s</i> (e.g. industries) makes choices across financing instrument <i>f</i> issued to asset agent <i>d</i> to minimise costs subject to satisfying funding requirements											

Γ

VICTORIA

UNIVERSITY

MELBOURNE AUSTRALIA

Asset agent (d)

Asset acq. Lability agent (s) Data Banks 0 13 FA-CAD Central Bank 10 0 Foreigners 272 44 Government 86 19 Households 0 0	793 111 0 29 0 61 188 0 0 0	680 21 91 282	352 21 383 24	166 1 102 28	288 0 205 24	e 29 0 12	0 0 0	0 0 0	Walras' law
ASSEt act. Banks 0 13 FA-CAD Central Bank 10 0 Foreigners 272 44 Exog. Government 86 19	793 111 0 29 0 61 188 0 0 0	680 21 91 282	352 21 383 24	166 1 102 28	288 0 205 24	29 0 12	0 0 0	0 0 0	Walras' law
FA-CAD Central Bank 10 0 Foreigners 272 44 Government 86 19 Households 0 0	0 29 0 61 188 0 0 0	21 91 282	21 383 24	1 102 28	0 205 24	0	0	0	Walras' law
FA-CAD Foreigners 272 44 Government 86 19 Exog. Households 0 0	0 61 188 0 0 0	91 282	383 24	102 28	205 24	12	0	0	
Exog. Government 86 19 Households 0 0	188 0 0 0	282	24	28	24	12			
Exog. Households 0 0	0 0				2.1	12	0	0	PSBR
	- 0	0	0	0	0	0	0	0	
Industries 522 0	739 82	438	0	186	223	18	0	0	Investment
Asset acq. NBFI 217 5	153 40	120	75	0	190	158	0	0	
Super 0 0	1 1	1170	0	1	0	0	0	0	Wage bill
Sset acq. Life insurance 2 0	9 0	63	0	3	161	0	0	0	
NRH 633 0	19 21	1265	2	152	7	0	0	0	Exog.
nvestment RH 518 0	62 17	316	2	124	6	0	0	0	

Centre of

Policy Studies

Balance sheets of traditional financial intermediaries

% change in average cost of non-equity finance ave_ror_sne_{(s)} = $\sum_{d \in AA} \sum_{f \in FINEQ} [AT1_{(s,f,d)} / BIGBUDNEQ_{(s)}] \times roipowl_{(s,f,d)}$

Liability optimisation over sources of non-equity finance

 $a_t_1_d_{(Banks,f)} = big_budl_neq_{(Banks)} +$

 $(TAU-1) \times [roipowl_d_{(Banks,f)} - ave_ror_sne_{(Banks)}] + f_bank_eq_{(f)}$

Bank holdings of cash and reserves with central bank

BANKRESR × p_bankresr = $AT1_{(CB,Cash,Banks)} \times a_t_{(CB,Cash,Banks)} +$

 $AT1_{(CB, DeposLoans, Banks)} \times a_t_{(CB, DeposLoans, Banks)}$

Centre of Policy Studies Banks self-impose a reserve ratio

Balance sheets of traditional financial intermediaries

% change in household deposits with banks $p_{bankdepo} = a_t_{(Banks, DeposLoans, Hlds)}$

Ratio of bank reserves to bank deposits p_resratio = p_bankresr - p_bankdepo If reserve ratio is exogenous, then "reserve" assets are no longer a choice variable in the bank's asset optimisation problem.

Bank assets excluding cash and deposits with central bank BIGBUDNR_(d) × big_bud_nr_(d) = BIGBUDGET_(d) × big_bud_(d) -

 $AT1_{(CB,Cash,d)} \times a_t_1_{(CB,Cash,d)} \ \text{-}AT1_{(CB,DeposLoans,d)} \times a_t_1_{(CB,DeposLoans,d)}$

Centre of Policy Studies

21

Change in financial flows (\$m.) (intermediation effect only)

Asset agent (d) Liability agent (s)	Banks	Central Bank	Foreigners	Governme nt	Household s	Industries	NBFI	Super	Life insurance	Non- reproduci ble housing	Reproduci ble housing	Total	
Banks	0	47	1,245	79	-54	484	790	1,832	142	0	0	4,565	
Central Bank	3	0	1	4	-30	21	2	0	0	0	0	0	
Foreigners	113	-93	0	-125	-332	-430	434	1,422	54	0	0	1,043	
Government	-79	24	-231	0	-857	-34	101	164	46	0	0	-866	
Households	0	0	0	0	0	0	0	0	0	0	0	0	
Industries	1,540	0	-224	52	-2,456	0	669	1,263	73	0	0	917	
NBFI	546	21	262	-12	-247	83	0	1,533	910	0	0	3,095	
Super	0	0	2	2	7,599	1	4	0	0	0	0	7,609	
Life insurance	4	0	15	0	-138	0	14	1,331	0	0	0	1,226	
Non-reproducible housing	1,338	0	36	¥	-2,003	4	567	33	1	0	ø	0	
Reproducible housing	1,101	0	29	16	-1,414	3	514	31	1	0	0	281	
Total	4,565	0	1,136	40	68	131	3,095	7,609	1,226	0	0		
Expressed a interest issu	as incre ed to h	ase ir ouseł	ו equi וolds	ty					1% wa	1% of national wage bill is \$7.4 b.			
Centre of Policy Studi	es								,			RIA SITY RALIA	

CONTACT DETAILS

James Giesecke Centre of Policy Studies

PHONE +61 3 9919 1478 EMAIL James.Giesecke@vu.edu.au www.vu.edu.au/centre-of-policy-studies-cops

TERM modelling since 2002

Glyn Wittwer Centre of Policy Studies, Victoria University CoPS workshop 10 August 2015

That is, you can reduce industry technology differences between regions by using more sectors

In Australia, we separate coal, gas, oil & renewable electricity generation

We avoid inventing numbers. Everything is a share of the original ABS number. Even our inter-regional trade matrices are based on detailed estimates of regional supplies and demands and the gravity assumption

Murray-Darling Basin

2007 Water Act included two main parts:

 Water buybacks -- irrigation associations don't like because it reduces their importance. Current Minister of Agriculture halted buybacks
 Infrastructure upgrades -- NFF etc. like, because

they spend \$0.5 million per irrigator while solving little

• Buybacks started during drought so job losses due to drought were blamed on buybacks

Droughts v. buybacks

- 2007 Water Act included two main parts:

 Water buybacks -- irrigation associations don't like because it reduces their importance. Current Minister of Agriculture halted buybacks
 Infrastructure upgrades -- NFF etc. like, because they spend \$0.5 million per irrigator while solving little
- Buybacks started during drought so job losses due to drought were blamed on buybacks
- It is quite obvious looking at price data that drought is the main driver of irrigation water prices, not the volume of irrigation water allocated each year (surprisingly weak driver)

Compare drought and buybacks (assuming factor rigidity)

	Drought SMDB 2007-08 relative to forecast	Buybacks relative to forecast 3500 GL
Dry-land productivity	-49%	
Irrigation: rain	-56%	
: water	-56%	-32%
Compensation	No	Full
Process	Involuntary	Voluntary

Compare drought and buybacks (assuming factor rigidity)

	Drought SMDB 2007-08 relative to forecast	Buybacks relative to forecast 3500 GL
Dry-land productivity	-49% *6.8=-3.3%	
Irrigation: rain	-56%} *6.1=-3.4%	
: water	-56%}	-32% -1.2
Total GDP loss	-6.7%	-1.2%
		12

13

Compare drought and
buybacks (TERM-H2O)

	Drought SMDB 2007-08 relative to forecast	Buybacks relative to forecast 3500 GL
Dry-land	-2.7% [not -3.3%]	+0.5% [not -0]
Irrigation: rain	-1.9% [not -3.4%]	
: water		-0.8 [not -1.2%]
Non-agriculture	-1.1% [not 0]	-0.3% [not 0]
Total GDP loss	-5.7%	-0.6%

Link to economic impact multiplier analysis

Prices almost always play a part, diminishing multipliers **Port Hedland real estate**

When we model mining construction in TERM

- Usually, we get a spectacular spike in housing rentals during the early years of a construction boom
- These may taper off slowly through a housing supply response
- Housing rentals crash back to the baseline forecast when the construction phase ends

Other countries: USA

- Three master databases
- One has 512 sectors in 70 regions
- 120 sectors x 436 congressional districts
- 82 region master database with California's main irrigated counties represented separately

20

Preamble on water

- There are economists around who believe that water prices ought to be equalised between urban and rural users
- This has a questionable economic basis: water is one of a number of factors: think of LAND(rural), LAND(urban), CAPITAL(rural), CAPITAL(urban)
- You make rental rates more unequal on relatively fixed factors as you equalise water prices
- Trading between users with relatively mobile factors (mobile farm capital) does enhance efficiency
- Trading between rural and urban users may be at the expense of "virtual water trading"

Californian drought

• Almonds growers are scapegoats for California's water woes

-- Not a century of grand engineering schemes

-- Not a complete lack of respect for the environment of indigenous communities

-- Not an absence of water trading and pricing according to scarcity

22

25

Scenario

- Cut back water used in agriculture in 12 Californian counties by 40%
- Allow water trading between irrigators
- This is physically possible but institutionally difficult at present
- However, water trading is occurring due to the desperation of perennial crop producers
- But trade volumes and prices aren't appearing in records anywhere

Conclusions

- I have been involved in over 60 projects in Australia using TERM
- Small regions suffer price impacts so IO analysis has problems
- Using CGE analysis results in insights we would miss otherwise: buybacks (terms-of-trade gains, water price offsets for falling land rentals); drought – rigidities may results in gains from some producers at expense of wider economy