Mark Horridge

Four Ways to RAS in GEMPACK

Notes to accompany CoPS Archive item TPMH0093.

 The RAS Problem

In preparing data for a CGE model, the need often arises to adjust some matrix A so that it sums to given row and column totals. The RAS method meets this need. Given an original matrix A(i,j), size rc, and target vectors of row totals R(i), size r, and column totals C(j), size c, the RAS attempts to find a new, similar, matrix B(i,j) such that:

 = C(j)
j = 1,...,c

 = R(i)
i = 1,...,r

The new matrix B(i,j) is related to the original A(i,j) via:

B(i,j) = rm(i).cm(j).A(i,j)
i = 1,...,r
j = 1,...,c

where rm(i) is a vector of row multipliers and cm(j) is a vector of column multipliers.

The RAS may be appropriately used to eliminate small inconsistencies that have arisen during data manipulation, or that may be traced to the use of data from several, mutually inconsistent, sources.

We can implement the RAS via an iterative procedure. Initially all elements of the row multipliers rm(i) and the column multipliers cm(j) are set to one. Then the following two steps are repeated.

(a) Using the current row multipliers, new column multipliers are chosen so that:

 = C(j)
j = 1,...,c

i.e.:
 = C(j)
j = 1,...,c

i.e.:
cm(j) = C(j)/
j = 1,...,c

(b) Using the current column multipliers, new row multipliers are chosen so that:

 = R(i)
i = 1,...,r

i.e.:
 = R(i)
i = 1,...,r

i.e.:
rm(i) = R(i)/
i = 1,...,r

Each of steps (a) and (b) disturbs the equality brought about by the previous step. However, successive adjustments to the row and column multipliers should become much smaller at every step. Usually, relatively few iterations of (a) and (b) are sufficient to compute rm(i) and cm(j) (and thus B(i,j)) to a high degree of accuracy.

The RAS procedure is often explained (and implemented) in another, perhaps more intuitive, way. Again starting with an initial matrix and given row and column targets, the following procedure is repeated:

Repeat:

Scale each row of the matrix so that it adds up to the corresponding row target.

Scale each column of the matrix so that it adds up to the corresponding column target.

until both rows and columns add up to the targets.

Barring numerical problems, the above procedure should give rise to just the same scaled matrix as does the first-described procedure.

The RAS formula, relating the new matrix B(i,j) to the original A(i,j) via:

B(i,j) = rm(i).cm(j).A(i,j)

can be derived as the first-order condition that arises from the following minimand, derived from Theil's entropy concept:

S = }
log{
 The RAS in GEMPACK

GEMPACK's TABLO language does not support an explicit "loop" or "repeat" statement, making it difficult to elegantly implement the RAS within GEMPACK. To address this problem, GEMPACK 10 includes a new RAS_MATRIX function, so that a single line of code can perform the RAS. However, while RAS_MATRIX efficiently solves the standard RAS problem, it is not suitable for solving all of the similar related problems that arise in data manipulation. Examples include:

· the need to RAS matrices of mixed sign

· three dimensional RAS variants

· RAS-like problems where only some rows or columns must add to given targets.

· RAS-like problems where groups of (rather than individual) rows or columns must add to given targets.

In such cases we must fall back on older scaling techniques, as illustrated in the examples described below. You could adapt these examples of older techniques to solve a variety of RAS-like problems.

 Four RAS examples

Accompanying this document are 4 TABLO programs showing different ways to solve the same RAS problem. The first, RASFUNC, uses the new RAS_MATRIX function
. The other 3 are designed to illustrate older (but more flexible) ways of doing the same job:

· RASBASIC repeats the same block of scaling code to simulate a loop command

· RASITER uses GEMPACK's implementation of the Euler procedure to repeatedly execute the scaling code.

· RASLIN solves the first-order conditions as a complete linearized system.

Each program reads an original matrix, together with row and column targets, from the file SPARSE.HAR. To make the task more challenging, the original matrix (at header RASM) has been constructed to contain less than 20% non-zero entries.

Unzip the archive containing the examples into an empty new folder, open a DOS box there, and type:

RunExm.Bat

to run all four example programs.

 Notes on RASFUNC

The RAS_MATRIX function causes a range of diagnostics to be written to the log file (RASFUNC.LOG). The log tells us that, although 100 scalings were requested (50 pairs of row/column scales), only 60 scales are performed, as by this time the multipliers have stopped changing.

 Notes on RASBASIC

RASBASIC implements a loop by the primitive method of repeatedly copying the same block of code. The row/column scaling is repeated only 8 times, so the answer is not quite as accurate as that given by the other methods. Formulae such as:

 (all,c,COM)(all,k,ITERS:$pos(k)=ITER) ROWSCALES(c,k) = ROWSCALE(c);

are used to track the progress of the scaling.

RAS requires that the sum of the column targets equals the sum of the row targets. RASBASIC (and the other example programs) scales the column targets to enforce this condition.

 Notes on RASITER

A many-step GEMPACK Euler computation essentially repeats all formulae (save those qualified "initial") at every step. At the end of each step, data read from file is updated; then the computation repeats. RASITER exploits this behaviour to perform a many-step RAS calculation.

To make the updating work properly, the following trick is needed. At the beginning of each step, a copy (RASMATX) of the current matrix (RASMAT) is made. Rows and columns of RASMATX are then scaled to add to the target values. Finally an "update (explicit)" statement sets RASMAT equal to RASMATX. Then the cycle repeats.

Two variables and one equation are included merely because GEMPACK requires them – they serve no other purpose.

 Notes on RASLIN

The RASLIN approach is based on a similar program designed for balancing square SAMs, described in SAMBAL.DOC which is included with CoPS Archive item TPMH0048. Sophisticated features of RASLIN include:

· provision to deal with negative matrix elements, or with zero rows or columns.

· an optional weight matrix, allowing some elements to be scaled less than others

· gentle scaling in the first steps, becoming more aggressive subsequently.

· a Newton-Raphson approach to eliminating errors

Like the previous methods, RASLIN repeatedly:

· calculates the differences between row and column totals; then

· scales rows and columns to eliminate all or part of the differences.

The difference lies in the way that the multipliers are calculated at each step. In the previous RAS methods each multiplier is estimated solely from the error in the corresponding constraint. For example, if a current row total is 10% greater than a target row total, we should multiply that row by 0.9. In doing this we would probably exacerbate the error in some other constraint.

In RASLIN all the multipliers are calculated simultaneously using information about the structure of the original matrix and using the errors in all of the constraints. Hence, interaction between the various constraints is taken into account. Therefore RASLIN takes a more direct path towards the eventual solution than do the previous methods.

For more information, see SAMBAL.DOC and the comments in RASLIN.TAB

� The RAS_MATRIX function is described in GEMPACK document GPD9.PDF (New Features of GEMPACK Release 10.0).

2

1

