CENTRE of POLICY STIDES and

the IMPACT PROJECT Eleventh Floor, Menzies Building Monash University, Wellington Road CLAYTON Vic 3800 AUSTRALIA Telephone: (03) 9905 2398, (03) 9905 5112

Fax: (03) 9905 2426 e-mail: Internet home page: from overseas: 61 3 9905 2398 or 61 3 9905 5112

61 3 9905 2426 impact@buseco.monash.edu.au http//www.monash.edu.au/policy/

Ethanol Expansion And Indirect

Land Use Change In Brazil

by

Joaquim Bento de Souza Ferreira Filho Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo and Mark Horridge Centre of Policy Studies, Monash University

General Paper No. G-218 June 2011

ISSN 1 031 9034

ISBN 978 1 921654 25 1

The Centre of Policy Studies (COPS) is a research centre at Monash University devoted to economy-wide modelling of economic policy issues.

Abstract

In this paper we analyze the Indirect Land Use Change (ILUC) effects of ethanol production expansion in Brazil through the use of an inter-regional, bottom-up, dynamic general equilibrium model calibrated with the 2005 Brazilian I-O table. A new methodology to deal with ILUC effects is developed, using a transition matrix of land uses calibrated with Agricultural Censuses data. Agriculture and land use are modeled separately in each of 15 Brazilian regions with different agricultural mix. This regional detail captures a good deal of the differences in soil, climate and history that cause particular land to be used for particular purposes.

Brazilian land area data distinguish three broad types of agricultural land use, Crop, Pasture, and Plantation Forestry. Between one year and the next the model allows land to move between those categories, or for Unused land to convert to one of these three, driven initially by the transition matrix, changing land supply for agriculture between years. The transition matrix shows Markov probabilities that a particular hectare of land used in one year for some use would be in an other use next period. These probabilities are modified endogenously in the model according to the average unit rentals of each land type in each region.

A simulation with ethanol expansion scenario is performed for year 2020, in which land supply is allowed to increase only in states located on the agricultural frontier. Results show that the ILUC effects of ethanol expansion are of the order of 0.14 hectare of new land coming from previously unused land for each new hectare of sugar cane. This value is higher than values found in the Brazilian literature. ILUC effects for pastures are around 0.47. Finally, regional differences in sugarcane productivity are found to be important elements in ILUC effects of sugar cane expansion.

JEL classification: C68, D58, E47, Q15, Q16

Ethanol Expansion and Indirect Land Use Change in Brazil

Joaquim Bento de Souza Ferreira Filho¹ and Mark Horridge²

1 Introduction

The worldwide expansion of biofuels production has raised concerns about its impact on food security and food supply, due to competition for agricultural land. Researchers have linked this competition to recent hikes in food prices.

In Brazil the issue is also highly controversial. Brazil is the world leader in ethanol production, initiating in the early 1970s a program which led to the development by local automobile companies of flex-fuel engines. Presently, around half of all Brazilian cars (and nearly all new cars) use these hybrid engines, which can run with any mixture of pure ethanol and gasohol (around 80% gasoline and 20% ethanol). In 2010 cars used nearly equal volumes of gasoline and ethanol (although diesel, used mainly by commercial vehicles, accounted for nearly 50% of transport energy use)³.

Although the production and use of ethanol in Brazil has increased greatly in the last decade, Bacha (2009) points out that no food scarcity has arisen. On the contrary, the per capita production of fruits, agricultural raw materials, food and beverages has increased in the period (Bacha, 2009). This phenomenon was accompanied by strong productivity increases in agriculture, as well as an increase in land use.

As is well known, Brazil still has a vast stock of land which could be converted to agricultural uses. Land clearing for agriculture is a complex and multi-dimensional phenomenon, that raises great concerns. Although the rate of land clearing is now easier to measure, *via* satellite monitoring, its causes are much harder to assess, as pointed out by Babcock (2009), who also argues that ..."the debate about whether biofuels are a good thing now focuses squarely on whether their use causes too much conversion on natural lands into crop and livestock production around the world". The debate is of economic importance, since regulations regarding biofuels will depend crucially on the indirect land use changes (ILUC) caused by the expansion in energy agricultural-based products.

Among the studies which try to measure ILUC associated with ethanol expansion in Brazil are those of Nassar et al (2010) and Ferez (2009), with different methodological approaches. In this paper we analyze the indirect land use changes caused by scenarios of ethanol expansion, through the use of a detailed General Equilibrium model of Brazil. To accomplish this task we propose a new method of assessing the ILUC.

¹ Address: ESALQ/USP. Departamento de Economia, Administração e Sociologia Rural. Av. Pádua Dias, 11. Piracicaba, SP. Brazil. CEP – 13418-900. Email: <u>jbsferre@esalq.usp.br</u>

² Centre of Policy Studies – COPS. Monash University, Melbourne, Austrália.

³ See http://en.wikipedia.org/wiki/Ethanol_fuel_in_Brazil for more detail.

2 Sugarcane and ethanol expansion and land use in Brazil

Ethanol production in Brazil doubled in the period between years 1990 and 2008, and, as shown in Figure 1, has been increasing continuously since year 2000, reaching a peak of around 22 billion liters in 2008. The increase came mainly from the Center-South⁴ region, which produces 90% of the total. Figure 2 shows that the bulk of expansion of sugarcane planted area happened in São Paulo⁵, which in 2008 accounted for 60% of total Brazilian ethanol production. São **Paulo**'s planted area grew from 1.8 Mha (million hectares) in 1990 to 4.9 Mha in 2008.

Figure 1. Evolution of ethanol production and exports in Brazil. (1,000 litres). Source: Secretaria de Comércio Exterior do Brasil (SECEX).

These figures are central to the ILUC discussion. In São Paulo and most of Brazil's Southern states, the stock of convertible land has basically run out, meaning that the supply of agricultural land is fixed. Hence sugarcane expands only at the expense of other land uses.

However, around 12 Mha (million hectares) have been added to total crop area between 1995 and 2006 according to the Brazilian Agricultural Censuses of 1996 and 2006 (14 Mha between 1995 and 2009). An extra 1.8 Mha of planted pastures have been incorporated in the same period. The expansion of agricultural area has taken place mainly in some states in the Centerwest, North and Northeast of Brazil, notably those closer to the Center-west Cerrados (tropical savanna) areas.

⁴ Brazil groups its 27 states into 5 "macro-regions": **North** (Rondônia, Acre, Amazonas, Roraima, Para, Amapá, Tocantins), **Northeast** (Maranhão, Piauí, Ceara, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, Sergipe and Bahia), **Southeast** (Minas Gerais, Espirito Santo, Rio de Janeiro and São Paulo), **South** (Paraná, Santa Catarina and Rio Grande do Sul), and **Center-west** (Mato Grosso do Sul, Mato Grosso and Goiás/Brasilia). These are shown in Appendix Map 1.

⁵ In this paper "São Paulo" refers always to São Paulo state, rather than to its capital city, also named São Paulo.

Figure 2. Evolution of sugarcane planted area in Brazil, by state. Hectares.

Figure 3 shows how land use evolved between the last two Brazilian Agricultural Censuses (1995 and 2006). There, "Unused" land is defined as the total area of each state minus the used areas: crops, pastures and planted forests, as shown in each respective Agricultural Census. It includes, then, all areas not used in agriculture, like natural forests, but also urban areas, lakes and roads. These areas, however, are expected to change much less than the land-cleared areas, so the change in "Unused" is used here as a proxy for deforestation, or land clearing for agricultural uses.

Figure 3. Land use change in Brazil, by state. Variation between 1995 and 2005. Source: Brazilian Agricultural Censuses 1995 and 2006.

3

As seen in Figure 3, the fall in unused land occurred mostly in the states of Rondônia and Para, in the North (Amazon) region, and in the state of Mato Grosso, also in the Legal Amazon. However, while in Rondônia and Para there was a strong increase in pastures, in Mato Grosso the increase was in crops areas (which was used mostly for soybean). By contrast, in São Paulo, the most important sugarcane expansion region, the unused land area actually increased in the period, as well as the land for crops, while pasture areas decreased.

This suggests, of course, that land substitution for sugarcane expansion in São Paulo occurred at the expense of land use for pastures, and not deforestation, since, as noted before, land stocks are run out in this state. But this seems to be the case with most other states, apart from those three states mentioned above. In Paraná state, for example, the 1.9 Mha (million hectares) increase in area under crops in the period was matched by a 1.97 Mha fall in pasture area. In Rondônia state, on the other hand, the 1.8 Mha increase in pasture area was matched by a 1.7 Mha fall in unused land.

This illustrates the complexity of analyzing the ILUC process, as noted by Babcock (2009). How much of the increase in pastures in Rondônia can be imputed to any particular crop area expansion in Southeast Brazil?

A trial area transition matrix can be seen in Table 1. This matrix shows in the last column the total area for each use in 1996 and in the last row the corresponding value in 2006. The offdiagonal values in the body of the table are the transition (calibrated) between those two periods, and show the amount of each land category which is transformed to another. Although the table only covers São Paulo, Mato Grosso and all Brazil, values for all the other states are available.

		0			· · · · · · · · · · · · · · · · · · ·
São Paulo	Crop	Pasture	PlantForest	Unused	Total
 Crop	5.4	0.0	0.0	0.4	5.8
Pasture	1.4	6.8	0.0	0.9	9.1
PlantForest	0.0	0.1	0.3	0.1	0.6
Unused	0.0	0.0	0.0	9.3	9.3
 Total	6.8	6.9	0.4	10.7	24.8
 Mato Grosso	Crop	Pasture	PlantForest	Unused	Total
 Crop	3.5	0.0	0.0	0.0	3.5
Pasture	3.7	17.7	0.0	0.0	21.5
PlantForest	0.0	0.1	0.0	0.0	0.1
Unused	0.8	4.0	0.1	60.4	65.3
 Total	8.0	21.8	0.1	60.4	90.3
Brazil	Crop	Pasture	PlantForest	Unused	Total
 Crop	44.8	1.1	0.0	4.9	50.8
Pasture	15.5	146.0	0.6	15.6	177.7
PlantForest	0.1	0.9	3.5	0.9	5.4
Unused	1.0	10.9	0.4	605.3	617.6
Total	61.4	158.9	4.5	626.7	851.5

Table 1. Total land use change matrix, 1996–2005, Mha (million hectares).

Source: original data from IBGE.

Table 1 shows that the total crop area in 1996 was around 50.8 Mha (million hectares), changing to 61.4 Mha in 2006. These figures were drawn from the respective Brazilian Agricultural Censuses. In the period about 15.5 Mha of pastures were converted to crops, while just 1.0 Mha were directly converted from unused land to agriculture. It can also be seen that for the period the total area under pastures has decreased from 177.7 to about 158.9 Mha⁶.

However, the land use transition differed markedly between states. While in São Paulo virtually no unused land was converted for any other use in the period, in Mato Grosso (on the agricultural frontier) about 840 thousand hectares were directly converted from unused to crop, and 4 Mha to pastures. This information, by state, will be used later to generate a transition matrix which will show the annual rate of change (or conversion) of each use to the other, and is the basis for our transition matrix modelling of land use change.

3 Methodology

In this paper we use a multi-period computable general equilibrium model of Brazil, based on previous work by Ferreira Filho and Horridge (2010), to analyze the ILUC effects of projected sugarcane expansion. The model includes annual recursive dynamics and a detailed bottom-up regional representation, which for the simulations reported here distinguished 15 aggregated Brazilian regions (see Appendix Map 2) It also has 38 sectors, 10 household types, 10 labor grades, and a land use change (LUC) model which tracks land use in each state, to be described below. The core database is based on the 2005 Brazilian Input-Output model, as presented in Ferreira Filho (2010). The model has as one of its distinctive features an ethanol/gasohol substitution module, as used by Ferreira Filho and Horridge (2009).

The model's recursive dynamics consist basically of three mechanisms: (i) a stock-flow relation between investment and capital stock, which assumes a 1-year gestation lag; (ii) a positive relation between investment and the rate of profit; and (iii) a relation between wage growth and regional labor supply. With these three mechanisms it is possible to construct a plausible base forecast for the future, and a second, policy, forecast – different only because some policy instruments are shocked to different values from the base (eg, the ethanol expansion scenarios). This difference can be interpreted as the effect of the policy change. The model is run with the aid of RunDynam⁷, a program to solve recursive-dynamic CGE models.

3.1 Modeling Regional Land Use

Increased production of biofuels may arise from technical progress, or by using more inputs, such as capital, labor or land. The last of these, land, is in restricted supply. Some fear that to produce more biofuels Brazil may need to divert land from other crops, raising food prices, or convert unused land to agriculture — at the expense of the environment. Others claim that sugarcane acreage could be doubled, without much affecting land available for other crops. To assess these claims, our CGE model needs to model land use explicitly, as described in this section.

⁶ This includes planted and natural pastures.

⁷ RunDynam is part of the GEMPACK economic modelling software [Harrison and Pearson (1996)].

To begin we emphasize that agriculture and land use are modeled separately in each of 15 Brazilian regions with different agricultural mix; and, clearly, land cannot move between regions. This regional detail captures a good deal of the differences in soil, climate and history that cause particular land to be used for particular purposes.

Table 2 is drawn from the model database and shows land used by agricultural industry in São Paulo (specializing in sugar and citrus), Mato Grosso (soybeans and beef cattle), and the whole of Brazil, in year 2005. Nationwide, around 60% of agricultural land is used for beef cattle grazing.

Brazilian land area statistics by the Instituto Brasileiro de Geografia e Estatísticas (IBGE) distinguish 3 types of agricultural land use, Crop, Pasture, and Plantation Forestry. We assumed that each industry mapped to one of these types, shown in the last column of Table 2.

 Table 2. Land used by agriculture in Brazil, 2005. Mha (million hectares).

LandType Crop Crop Crop Crop Crop
Crop Crop Crop Crop Crop
Crop Crop Crop Crop
Crop Crop Crop Crop
Crop Crop Crop
Crop
Crop
Сюр
Crop
PlantForest
Pasture
Pasture

Source: Brazilian Agricultural Censuses of 1995 and 2006.

Within each region, the area of "Crop" land in the current year is pre-determined. However, the model allows a given area of "Crop" land to be re-allocated among crops according to a CET-like rule:

$$A_{jr} = \lambda_r . K_{jr} . R_{jr}^{0.5}$$

where A_{jr} is the area of crop land in region r used for industry j, and R_{jr} is the unit land rent earned by industry j. K_{jr} is a constant of calibration while the slack variable λ_r adjusts so that:

$$\sum_{j} A_{jr} = A_{r} = \text{ pre-determined area of Crop land.}$$

The same mechanism is used to distribute Pasture land between Beef and Dairy uses. Forestry land has only one use.

The final row of Table 2 shows the total area of each region -- which considerably exceeds the amount used for agriculture. The difference, called "Unused", accounts for 73% of Brazil's total area. It should include land used for cities and other housing, roads and road verges, rivers and their banks, land too steep, dry or swampy to use, environmental reserves, and many other uses. It also includes land which could be used for crops or grazing, but is not yet so used. The North and West of Brazil contain large areas both of cultivable savanna and of forests that could be felled for grazing.

Between one year and the next the model allows land to move between the Crop, Pasture, and Forestry categories, or for unused land to convert to one of these three. Based on the information displayed in Table 1 (which shows land use changes between 1996 and 2005), a transition matrix approach is used, as illustrated in Table 3 below. As before, we show extracts for São Paulo (around the size of UK), Mato Grosso (France + Germany), and the whole of Brazil (non-Alaskan USA). The transition matrices show land use changes in the first year of our simulation. Row labels refer to land use at the start of a year, column labels to year end. Thus the final, row-total, column in each sub-table shows initial land use, while the final, column-total, row shows year-end land use. Within the table body, off-diagonal elements show areas of land with changing use.

São Paulo	Crop	Pasture	PlantForest	Unused	Total
Crop	6.4	0.1	0	0.1	6.6
Pasture	0.4	6.6	0	0.1	7.1
PlantForest	0	0.1	0.3	0	0.4
Unused	0	0.1	0	10.6	10.7
Total	6.7	6.9	0.4	10.8	24.8
MatoGrosso	Crop	Pasture	PlantForest	Unused	Total
Crop	8.7	0.2	0	0.1	9
Pasture	1	20.6	0	0.1	21.8
PlantForest	0	0.1	0	0	0.1
Unused	0	0.9	0.1	58.4	59.4
Total	9.7	21.8	0.1	58.7	90.3
Brazil	Crop	Pasture	PlantForest	Unused	Total
Crop	59.2	1.6	0	2	62.9
Pasture	5	153	0.4	2.1	160.5
PlantForest	0	0.9	3.6	0.1	4.7
Unused	0.1	3.7	0.6	619	623.4
Total	64.3	159.2	4.6	623.3	851.5

Table 3. Transition matrices for land use change (Mha). Average annual changes.

Source: primary data from IBGE.

Above, row and column values reflect current land use and the average rate of change of land use during the last 11 years (1996 to 2005), drawn from the Brazilian Agricultural Censuses of 1996 and 2006⁸. Numbers within the table bodies are not observed but reflect an imposed prior: that most new Crop land was formerly Pasture, and that new Pasture normally is drawn from Unused land. The prior estimates are scaled to sum to data-based row and column totals.

The transition matrices could be expressed in share form (ie, with row totals equaling one), showing Markov probabilities that a particular hectare used today for, say, Pasture, would next year be used for crops. In the model, these probabilities or proportions are modeled as a function of land rents, via:

 $S_{pqr} = \mu_{pr} . L_{pqr} . P_{qr}^{\alpha} . M_{qr}$

where (the r subscript always denoting region):

 S_{pqr} = share of land type p that becomes type q in region r μ_{pr} = a slack variable, adjusting to ensure that $\sum_{q} S_{pqr} = 1$ L_{pqr} = a constant of calibration = initial value of S_{pqr} P_{qr}^{α} = average unit rent earned by land type q α = a sensitivity parameter, with value set to 0.35 M_{qr} = a shift variable, initial value 1

The sensitivity parameter a was set to 0.35 to give a "normal" (close to observed) past evolution of crops areas in the baseline.

Thus, if Crop rents rise relative to Pasture rents, the rate of conversion of Pasture land to Crops will increase. To model the rate of conversion of Unused land we needed to assign to it a fictional rent—we chose the regional CPI. However, in our scenarios we only allowed the amount of Unused land to decrease in selected frontier regions, namely Rondonia, Amazon, ParaToc, MarPiaui, Bahia, MtGrosso, and Central. In the other, mainly coastal regions, total agricultural land was held fixed (by endogenizing the corresponding M_{qr} variable).

In summary, the model allows for, say, Sugarcane, output to increase through:

- assumed uniform primary-factor-enhancing technical progress of 1.5% p.a. (baseline assumption);
- increasing non-land inputs;
- using a greater proportion of Crop land for sugarcane, in any region;
- converting Pasture land to Crops, if Crop rents increase, in any region; and
- converting Unused lands to Pasture or Crop uses, in frontier regions.

The last three mechanisms above characterize the indirect land use change (ILUC) examined in this paper.

⁸ The Brazilian Agricultural Census of 1996 has as references the periods between August, 1, 1995 and July, 31, 1996. The 2006 Agricultural Census has as reference the year of 2006 (IBGE, available at http://www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/brasil 2006/default.shtm).

4 Model baseline and scenario simulation

As stated before, the model database is for year 2005. The model was run for three years of historical simulations, using observed data to update the database to 2008, followed by annual simulations to simulate the ethanol expansion scenario until 2020. The baseline assumes moderate economic growth until 2020, around 3.5% increase in real GDP per year, with projections for population increase by state by IBGE.

To analyze the ILUC effects of an aggressive expansion of ethanol production, we compare a moderate scenario with a more aggressive one, analyzing the differences in land use in both situations. With this in mind, the baseline projections for ethanol entail a moderate expansion in exports as well as in household use, around 4% per year. These projections result in an equivalent 4% per year increase in ethanol production in Brazil⁹.

The policy scenario, on the other hand, is based on the projections by EPE (2008), and comprises a 12.8% per year increase in ethanol exports, from 2008 to 2020, and a 9.2% per year increase in household use of ethanol, in the same period. No endogenous technological change was considered for the simulations.

4.1 Closure

The model closure allows labor to move between regions and activities, driven by real wages changes, but not to move between labor categories. Capital accumulates between periods driven by profits, as discussed before. In order to properly approach the sugarcane expansion, a few other closure rules were used in the simulations:

- Capital in the ethanol industry was allowed to accumulate only in some regions, where ethanol expansion is expected to occur (Ferreira Filho and Horridge, 2009). These regions are Minas Gerais (MinasG), São Paulo, Parana, Mato Grosso do Sul (MtGrSul), Mato Grosso (MtGrosso) and Central.
- Exports of agricultural raw products, food, textiles and mining were kept fixed in the simulations.

5 Results

In what follows we first present the model baseline for land use in Brazil until 2020, generated by our projections for the economy and by our transition matrix approach.

⁹The observed expansion in ethanol exports in Brazil in the historical simulation period, from 2005 to 2008 was much higher, around 25% per year.

Figure 4. Baseline evolution of broad categories of land use in Brazil. Percent variation, accumulated.

Our baseline scenario, shown in Figure 4, entails a 4.1% fall in unused land, accumulated in 2020, matched by a 13.2% increase in area for crops, 10.6% increase in area for pastures, and 7.3% increase in area used for planted forests. This represents an extra 25.6 Mha (million hectares) coming from unused land to the production of crops (8.3 Mha), pastures (16.9 Mha) and planted forests (0.34 Mha). These baseline projections, of course, result from our projections for the expansion of the Brazilian economy until 2020, as explained before, and the "normal" rate of land use change observed in the past, as expressed by our transition matrix¹⁰.

In regional terms, the bulk of the fall in unused land occurs in the Brazilian deforestation frontier: Mato Grosso (-12.4 Mha), Paratoc (Para and Tocantins states, -5.9 Mha) and Rondonia (-2.9 Mha). The states of Maranhão and Piaui (MarPiaui region), agricultural frontiers in the savanna region, also present a significant fall in unused land, -2.0 Mha by year 2020.

The simulated increase in ethanol use and exports led to a 14.8% increase in sugarcane production above the baseline, in year 2020. This increase happens at the expense of other agricultural outputs, which are slightly reduced, as seen in Table 4. Livestock-related activities increase production slightly due to capital attraction in those activities, since exports of meats were fixed in the closure.

¹⁰ We have, however, restricted the expansion of agricultural areas only to the expansion regions, as explained before.

Agricultural product	Production	Land use
Rice	0.10	-0.34
Corn	-0.26	-1.28
Wheat	-1.46	-2.09
Sugarcane	14.81	8.17
Soybean	-0.04	-0.86
Other agric	-0.65	-1.67
Cassava	0.03	-0.71
Tobacco	0.13	-0.37
Cotton	-0.26	-0.73
Citrus fruits	-0.65	-2.98
Coffee	-0.01	-1.10
Forestry	-0.51	-0.73
Livestock	0.03	-0.30
Raw milk	0.06	-0.37
Other livestock	0.10	0.00

Table 4. Changes in agricultural production and land use, cumulative percent deviation from baseline, 2020.

Source: model results.

Through competition in the primary factor markets, the expansion in sugarcane area would take land from other agricultural activities. The projected variation in each land use can also be seen in the last column of Table 4. To match the expansion in sugarcane area the other agricultural activities reduce their area, compared to the baseline.

The all-Brazil results in Table 4 are aggregates of results computed separately for each of the model's 15 regions, which specialize in different crops. Further, labour is imperfectly mobile between regions, and we allowed only some (frontier) states to convert unused land. A full explanation of results must draw on these regional differences. For example, citrus fruit area reduces the most, since this activity is located mostly in São Paulo, the main sugarcane producer. With total land supply fixed in this (non-frontier) state, the sugarcane expansion must attract land from other uses.

Figure 5. Sugarcane area variation (% accumulated in 2020) and productivity index, by region.

Some agricultural outputs increase despite the fall in land use. For example, rice production increased by 0.1% relative to the baseline, despite the 0.34% fall in its area. The reason is that rice is produced in regions where the competition with sugarcane is not as intense as, say, in the case of corn. Only 23% of total rice production in the base year is produced in the sugarcane expansion region. Actually, most of the rice (about 55%) is produced in Rio Grande do Sul state (in the SCatRioS aggregate) which produces almost no sugarcane. Corn, on the other hand, has about 74% of total production in the expansion area, in the base year. Following the price increases in the simulation, rice is able to attract more capital and labor from other activities than corn, increasing its production.

Another interesting case is raw milk production. This activity also increases production, despite the fall in land use in aggregate. It's a regional effect associated with the expansion of sugarcane in Brazil's most important milk state, Minas Gerais. Sugarcane is much less labor intensive than most of other agricultural activities. This is particular true for the new expansion regions, like Minas Gerais. The sugarcane expansion, then, frees up labor for the remaining activities, benefitting most the more labor intensive ones. Besides that, the second largest milk producing state is Santa Catarina, which is not in the expansion area, and has productivity by hectare higher than Minas Gerais. The increase in milk prices and the reduction in labor wages in milk production stimulate supply in this region, increasing production at the new prices.

Notice that while sugarcane production increases 14.8% by the end of the period, its land use increases less, by 8.17%. The reason is that sugarcane is expanding in regions with higher productivity than the Brazilian average. São Paulo, the state with the highest sugarcane productivity in Brazil, is where sugarcane expands the most, as shown in Figure 5. This effect is relevant for the ILUC discussions regarding sugarcane expansion, since the higher is the produc-

tivity of the expanding culture the smaller is the land displacement required, for each unit of product.

As discussed before, the main interest of this paper is on the ILUC effects of the ethanol expansion in Brazil. For this purpose we have computed the overall land use change, according to broad land areas categories caused by the ethanol expansion, by state. Here, however, we present only the national aggregates. The evolution of broad definition land use variation caused by the ethanol expansion scenario simulated can be seen in Figure 6.

Figure 6. Simulation results. Land use variation in Brazil. Percent variation.

Model results show that a 0.75% expansion in crops area would be required by 2020, to accommodate the simulated ethanol expansion scenario. Pasture land would fall by 0.21%, Planted forest land by 0.65%, and Unused land by 0.02%. In physical terms this would account for an extra 530 thousand hectares of crops¹¹, and a reduction of 380 thousand hectares of pastures, 30 thousand hectares of planted forests, and 120 thousand hectares of unused land.

Nassar et al. (2010), in a study about the relation of sugarcane expansion and land use change in Brazil with physical data for the period 2005-2008, concluded that the ILUC caused by sugarcane was around 8%, meaning that for each extra hectare of sugarcane in the period only 0.08 hectares of new land, or deforestation, was observed in Brazil as a whole. Our results allow the same type of calculation, shown in Figure 6, which shows the period average of the ratio of the change in sugarcane area and the change in unused or pastures areas.

¹¹ Sugarcane itself would require 680 thousand hectares more, but it would attract land from other activities, reducing the total requirement of crop land.

	Ratio of area change
Unused/sugarcane	-0.14
Pastures/sugarcane	-0.47

Table 5. Simulation results. Average ILUC in Brazil.

Table 5 above shows that, over the period considered¹² each extra sugarcane hectare was associated with a 0.14 hectares fall in unused land, and with a 0.47 hectares fall in pastures. Our model's projected ILUC, then, is somewhat higher than the one reported by Nassar et al. (2010).

Our reported value for ILUC above is an average for the period, but our dynamic model generates yearly values, which evolve over time. These ILUC values change monotonically from -0.014 in 2009 to -0.268 in 2020, averaging -0.14. This happens because of regional differences in sugarcane land productivity, as discussed before. As sugarcane expands in São Paulo (the state with higher productivity), attracting land from other uses, the price of land starts to increase faster, making this substitution harder. This makes the rate of cane expansion higher in areas where the productivity is smaller, increasing the land area required for each ton of sugarcane. In the end, this process causes an increasing ILUC. Figure 7 graphs the simulated rate of expansion of sugarcane area for the main cane-growing states in Brazil. It shows that sugarcane area grows less fast in São Paulo (the state with the higher productivity) than in several other states.

Figure 7. Model results. Sugarcane land use by region. Percent variation, year on year. Source: model results.

Of course, this happens in the simulations because we have kept productivity fixed across years. But this sheds light on the importance of productivity increases for the biofuels-

¹² ie, 2008-2020, since the 2005-2007 simulated period was just the historical simulations for database updates.

deforestation issue. The higher the productivity increases the smaller the amount of new land necessary to match a given increase in biofuels production. At the same time, ILUC associated with sugarcane expansion would be reduced if the expansion into new areas is accompanied by productivity increases.

6 Final remarks

Biofuel expansion has raised concern worldwide, especially in the light of recent food price increases. The diversion of land previously used in food production towards energy crops is considered to be one factor behind those food price hikes. Our simulation, however, shows that this is not the case in Brazil. With the projected "normal" rate of increase in land supply at the agricultural frontier the amount of new land required for sugarcane production would be relatively small, and the same is true for the fall in other crops or livestock production. The rate of ILUC found here, although higher than that found by previous studies, cannot be considered very high: only 0.14 hectares of extra land would be required for each extra sugarcane hectare.

Another very important point arises from our results, relating to agricultural productivity. As shown, the expansion of sugarcane in the region with higher agricultural productivity actually saves land, in relative terms. However, it's expected that land prices will increase due to this attraction, fostering sugarcane expansion in the new regions. The average productivity in those regions was shown to be higher than in some traditional regions, but smaller than in São Paulo. This sheds light on an important topic for public policies, since the higher the productivity gains in sugarcane production, the smaller will be the ILUC effect. Agricultural research policies, then, important as they are in the general context of food security, can also be regarded as important instruments to reduce ILUC effects of biofuels expansion.

7 References

- EPE. 2008. Perspectivas para o Etanol no Brasil. Cadernos de Energia. Ministério das Minas e Energia do Brasil. 62 p.
- Babcock, B. 2009. Measuring Unmeasureable Land-use Changes from Biofuels. Iowa Ag Review. Center for Agricultural and Rural Development. Summer 2009, Vol.15,no. 3.
- Bacha, C.J.C. 2009. The impacts of agriculture-based energy sources on land use in Brazil. 49th European Regional Science Association Meeting (ERSA 2009), Lodz, Poland, August.
- Ferez, J. 2010. Produção de etanol e seus impactos sobre o uso da Terra no Brasil. 48°. Congresso da Sociedade Brasileira de Economia, Administração e Sociologia Rural. Campo Grande, MS. Anais (CD-ROM).
- Ferreira Filho, J,B,S, 2010, The world increase in ethanol demand and poverty in Brazil, Research Report to the United Nations Commission to the Latin American and Caribbean ECLAC, Forthcoming.
- Ferreira Filho, J.B.S; Horridge, M.J. 2009. The World Increase in Ethanol Demand and Poverty in Brazil. In: Twelfth Annual Conference on Global Trade Analysis, 2009, Santiago. Proceedings of the Twelfth Annual Conference on Global Trade Analysis, 2009.
- Ferreira Filho; J,B,S; Horridge, J,M, 2010. Climate Change Impacts on Agriculture and Internal Migrations in Brazil. In: Thirteenth Annual Conference on Global Economic Analysis, 2010, Penang, Malasia.

- Harrison, W.J and K.R. Pearson, 1996, "Computing Solutions for Large General Equilibrium Models Using GEMPACK", Computational Economics, Vol. 9, pp.83-127.
- Nassar, A.M; Antoniazzi, L.B; Moreira, M.R; Chiodi, L; Harfuch, L. 2010. Contribuição do Setor Sucroalcooleiro para a Matriz Energética e para a Mitigação de Gases do Efeito Estufa no Brasil. Available at <u>http://www.iconebrasil.org.br/pt/?actA=8&areaID=7&secaoID=20&artigoID=2109</u>.

Appendix: Regions of Brazil

Map 1: 27 states and 5 macro-regions of Brazil Note: maps are scaled to enlarge areas at bottom and right (so Amazon looks smaller)

Map 2: 15 regions used for simulation