
 

 

9  
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Econometric Foundations of the Great 

Ratios of Economics 
 

CoPS Working Paper No. G-300, March 2020 

 

The Centre of Policy Studies (CoPS), incorporating the IMPACT project, is a research centre at Victoria 
University devoted to quantitative analysis of issues relevant to economic policy. 
Address: Centre of Policy Studies, Victoria University, PO Box 14428, Melbourne, Victoria, 8001 
home page: www.vu.edu.au/CoPS/     email: copsinfo@vu.edu.au   Telephone +61 3 9919 1877 
 

 

 
Don Harding 

Centre of Policy Studies,  
Victoria University 

 
 
 

 
 

ISSN 1 921654 02 3                                                                                                               ISBN 978-1-921654-08-4 





Econometric foundations of the great ratios

of economics

Don Harding1

March 28, 2020

1I thank Adrian Pagan for comments on earlier drafts, all remaining errors are
mine. I acknowledge support from ARC Discovery Grant DP1801038707



Contents 

 1. Introduction 2 

2. Theoretical framework 4 

 2.1 Rewriting the great ratios hypothesis in terms of the  
  stationary Distribution for Rt 8 
 
3. Positive moments of Rt exist but are useless for making inference 
 About the great ratios 9 
 
4. Exact likelihood and unit roots 11 
 
5. Application 13 
 
 5.1 Exact likelihood for VECM(1) 15 
 
6. Conclusion 17 
 
Appendix A Proofs and technical material 18 
 
References  19 

  

 



Abstract

We study the puzzle that econometric tests reject the great ratios hypoth-

esis but economic growth theorists and quantitative macroeconomic model

builders continue to embed that hypothesis in their work. We develop an

econometric framework for the great ratios hypothesis and apply that frame-

work to investigate the commonly used econometric techniques that produce

rejection of the great ratios hypothesis. We prove that these methods can-

not produce valid inference on the great ratios hypothesis. Thus we resolve

the puzzle in favour of the growth theorists and quantitative macroeconomic

model builders. We apply our framework to investigate the econometric basis

for an influential paper that uses unit root and cointegration tests to reject

the great ratios hypothesis for a vector that comprises consumption, financial

wealth and labour income.

JEL Codes: C12, C18, C32, E00

Keywords: Great Ratios Hypothesis, Cointegration, Likelihood Ratio Infer-

ence



1 Introduction

Despite being rejected by econometric tests, the great ratios hypothesis is a

favorite assumption of economic growth theorists and quantitative macroeco-

nomic model builders. We develop an econometric framework to investigate

this puzzle.

Klein and Kosobud (1961) held that certain ratios of economic variables

are time invariant. In light of the evidence that many macroeconomic series

are integrated of order one, I(1), the original hypothesis can be split into

two hypotheses, the balanced growth hypothesis that deals with covariance

stationary variables and the great ratios hypothesis that deals with integrated

variables. For variables Xt and Yt, that are both I(1) and strictly positive,

this hypothesis holds that R∗t is covariance stationary, where R
∗
t ≡ Xt

Yt
. Under

the alternative hypothesis R∗t is not covariance stationary.

Since lnR∗t = lnXt − lnYt is also covariance stationary, inference on

the great ratios hypothesis is usually made via unit root and cointegration

tests. Initially, these tests failed to reject the great ratios hypothesis; see for

example, Campbell (1987), King et.al. (1991), Cochrane (1994). However,

on longer runs of data for the US and for the G7 countries, Harvey et. al.

(2003) find that the cointegrating restrictions implied by the great ratios are

rejected. This rejection is also found in the influential work of Lettau and

Ludvigson (2013).

Despite the econometric evidence cited above, almost all quantitative

macroeconomic models of fluctuations, whether produced by academics, cen-

tral banks or commercial ventures embed some of the great ratios in their

structure; see Kapetaneous et.al. (2019).

Jones (1995) placed considerable emphasis on interpreting and testing

the stylized facts of growth within the unit root/cointegration framework.

Twenty years later writing inThe Handbook of Macroeconomics, Jones (2015),

makes no use of these methods to interrogate, curate, interpret and analyze

the facts of economic growth. In the economic growth literature avoidance

of unit root and cointegration tests as a framework to collect stylized facts

is clear and evidently deliberate.
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After setting out Kaldor’s stylized facts (which overlap with the great

ratios). Jones and Romer (2010) observe that

Redoing this exercise nearly 50 years later shows just how

much progress we have made. Kaldor’s first five facts have moved

from research papers to textbooks. There is no longer any inter-

esting debate about the features that a model must contain to

explain them. These features are embodied in one of the great

successes of growth theory in the 1950s and 1960s, the neoclassi-

cal growth model.

The puzzle that we study is that facts that are rejected on the basis of

widely used econometric tests can also be described as part of the established

body of knowledge by economic growth theorists. In resolving this puzzle we

focus on exploring whether there is a previously unknown feature that limits

the usefulness of unit root and cointegration based inference.

We work with a variable Rt that is constructed as the ratio of the nu-

merator to the sum of numerator and denominator in the candidate great

ratio, i.e. Rt = Xt
Xt+Yt

.The key insight that underpins our results is set out in

section 2 where we prove that a stationary distribution always exists for Rt.

Moreover, if Xt and Yt are I(1) this stationary distribution places probability

one-half on Rt = 1, probability one-half on Rt = 0 and with probability

zero Rt lies in the interior of [0, 1]. We also fully characterize the joint and

conditional distributions for (Rt, Rt−k).

Clearly R∗t is a monotonic transformation of Rt, ie R∗t = Rt
1−Rt , but the

nature of the stationary distribution for Rt makes it impossible to use the sta-

tionary distribution for Rt to obtain a stationary distribution for R∗t . Thus,

our results do not contradict the well known fact that a stationary distribu-

tion cannot exist for R∗t since it is I(1) with unbounded support.

By construction Rt is a bounded variable that lies in [0, 1] , we prove,

in section 2, that when Xt and Yt are I(1) and the great ratios hypothesis

is false, Rt is integrated of order one in the sense used by Granger (2010)

that Corr (Rt, Rt−k) = 1 for all k > 0. This resolves the question asked by

Granger (2010) of whether a bounded process can be I(1).
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To prove that there is a fundamental problem with econometric testing

of the great ratios hypothesis we focus first, in section 3, on whether it is

possible to produce moment based inference on that hypothesis. Then in

section 4 we obtain the exact likelihood and show that its form precludes

likelihood based inference.

If the great ratios hypothesis is false and the numerator and denominator

in the ratio are I(1), then the stationary distribution for Rt has the property

that all positive moments ofRt are equal to one-half. Thus it is natural to ask,

in section 3, whether sample moments of Rt can be used to make inference on

the great ratios hypothesis. We find the distribution of the sample moments

and show that it precludes using them to make inference about the great

ratios. This result and its explanation helps to build intuition regarding the

issues that arise in making inference about the great ratios hypothesis.

We demonstrate in section 4 that unit root tests are invalid for making

inference on the great ratios hypothesis. We first prove that the conditional

likelihood function can be written in terms of Rt. Then we show that the

stationary distribution for Rt can be used to obtain the distribution of the

initial condition. Combining these we obtain the exact likelihood and show

that it has properties that make inference invalid.

In section 5 we apply our framework to investigate the influential paper

by Lettau and Ludvigson (2013). This paper is the ideal application for our

framework since the paper uses unit root and cointegration tests to make in-

ference about the great ratios in a three variable vector error correction model

(VECM). The variables in the model are consumption, financial wealth and

labour income, all in per capita terms. Thus, the findings of their paper have

significant implications for the permanent income theory of consumption.

Conclusions are presented in section 6.

2 Theoretical framework

Wallis (1987) and Granger and Ding (1996) suggest that the logistic trans-

formation can be used to map univariate variables defined on [0, 1] into the

real line. We use a generalization of this idea to express Rt as a continuous,
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monotonic transformation of a variable rt that is defined on the real line,

Rt =
1

1 + g(rt)
(1)

where g(.) is a strictly monotonically increasing, positive, continuous function

and lim
x→−∞

g (r) = −∞ and lim
x→∞

g (r) = ∞. We model rt as the sum of a

deterministic component dt and a stochastic component zt that is related to

εt via the Beveridge-Nelson decomposition (3).

rt = zt + dt (2)

zt − z0 = ψ (1) (ε1 + ...+ εt) + ηt − η0 (3)

Where Eεt = 0, Eε2t = σ2, Eεtετ = 0 for t 6= τ ,
∑∞

j=0 j
∣∣ψj∣∣ < ∞,

ψ (1) =
∑∞

j=0 ψj, δj = −
∑∞

i=1 ψj+i,
∑∞

j=0 δj <∞ and ηt =
∑∞

j=0 δjεt−j is a

covariance stationary process.

There are now three cases to consider depending on whether the deter-

ministic component, dt, is dominated by, is of the same order or dominates√
t. Theorem 1 gives the unique limiting distribution for Rt when zt is an

integrated process and the deterministic component is dominated by
√
t in

the sense that lim
t→∞

dt√
t

= 0. Later we discuss the other two cases.

Theorem 1 Define Rt as the function of rt in (1) where rt is the sum of a

stochastic component zt and a deterministic component dt via (2). The sto-

chastic component zt has the Beveridge-Nelson decomposition (3). The deter-

ministic component, dt, is assumed to have the property that lim
t→∞

dt√
t

= 0. The

long run variance ψ (1) is assumed to be non zero. Under these conditions,

the limiting distribution of Rt is (4).

lim
t→∞

Pr (Rt ≤ θ) =
1

2
, θ ∈ [0, 1) (4)

And, the limiting distribution of (Rt, Rt−k) is (5).

lim
t→∞

Pr (Rt ≤ α,Rt−k ≤ α) =
1

2
, α ∈ [0, 1) (5)
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Proof. See Appendix A
The limiting distribution for Rt, (4), places probability one-half on Rt =

1, probability one-half on Rt = 0 and probability zero on drawing val-

ues of Rt in the interior of [0, 1] . The limiting distribution for (Rt, Rt−1)

places probability one-half on (Rt = 0, Rt−1 = 0) and probability one-half on

(Rt = 1, Rt−1 = 1) . The limiting distribution is independent of the monotonic

transformation, g(.), this property guarantees the generality of our results.

Importantly, it is not possible to use (1) in conjunction with (4) to obtain

the stationary distribution of rt or R∗t ensuring that our result is consistent

with received econometric theory which holds that a stationary distribution

does not exist for an I(1) series defined on the real line.

Corollary 1 confirms that the limiting distribution is the unique stationary

distribution for Rt and also provides the the transition probabilities associ-

ated with the stationary distribution. These transition probabilities have the

unusual property that the path followed by Rt is solely determined by the

initial condition R0.

Corollary 1 The limiting distribution (4) has transition probabilities (6)
and (7)

Pr (Rt = 1|Rt−k = 1) = 1 , ∀k > 0 (6)

Pr (Rt = 0|Rt−k = 0) = 1 , ∀k > 0. (7)

The limiting distribution (4) is also the stationary distribution for Rt.

Proof. Let Pij denote Pr (Rt = i, Rt−1 = j) , Pi|j denote Pr (Rt = i|Rt−k = j)

and Pi denote Pr (Rt = i) for i, j = 0, 1, then (6) follows from P1|1 ≡ P11/P1,

(5) yields P11 = 1
2
and (4) yields P1 = 1

2
. A similar calculation yields (7).

Stationarity of the distribution can be established by noting that

Pr (Rt = j) = Pr (Rt = j|Rt−k = j) Pr (Rt−k = j) =
1

2
for j = 0, 1.

We now turn to the question of whether Rt is properly described as I(1)

or I(0)? This question is answered by theorem 2. The key to answering
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this question for a bounded process such as Rt is to focus on the correlation

between Rt and Rt−k. As Granger (2010, p4) observed,

the qualifying feature of an I(1) process is the strong relationship

between now and the distant past, so that Corr (Rt, Rt−k) = 1

for any k.

Theorem 2 A variable Rt, that has stationary distribution (4) and transi-

tion probabilities (6) and (7) has the property that Corr (Rt, Rt−k) = 1 for

all k. Rt is therefore I(1).

Proof. Cov(Rt, Rt−k) = ERtRt−k − ERtERt−k. From the stationary dis-

tribution ERtRt−k = Pr (Rt = 1, Rt−k = 1) = 1
2
. Also ERt = ERt−k = 1

2
so

that Cov(Rt, Rt−k) = 1
4
. Again from the stationary distribution V ar (Rt) =

V ar (Rt−k) = 1
4
so
√
V ar (Rt)V ar (Rt−k) = 1

4
. Thus Corr (Rt, Rt−k) = 1/4

1/4
=

1.

– – – – – – – – – – – – – – –

It is now convenient to discuss the two remaining cases mentioned above.

The first of these is where the deterministic component, dt, is of the

same order as
√
t in the sense that lim

t→∞
dt√
t

= b. Where b is a constant.

Here the main change is that in theorem 1 the limiting distribution becomes

lim
t→∞

Pr (Rt ≤ θ) = q where q is a constant that is a function of b. Whether q

is less than or greater than one-half depends on the sign of b.

The second of the remaining cases is where the deterministic component,

dt, dominates
√
t in the sense that lim

t→∞

∣∣∣ dt√
t

∣∣∣ = ∞. Here the main change is
that in theorem 1 the limiting distribution becomes degenerate in the sense

that all of the probability mass is place on zero or one. Again, whether the

probability mass is located on zero or one depends. on the sign of lim
t→∞

∣∣∣ dt√
t

∣∣∣.
Complete proofs of the propositions above have been omitted from the paper

for conciseness because they all comprise straight forward variants of the

proof of theorem 1.
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2.1 Rewriting the great ratios hypothesis in terms of

the stationary distribution for Rt

There are two main reasons for rewriting the great ratios hypothesis in terms

of the stationary distribution for Rt.

First, it is more natural to express long run economic statements in terms

of the stationary distribution for Rt than it is in terms of whether lnR∗t −αt
is covariance stationary. For example, consider consumption Ct and income

Yt and the ratio Rt ≡ Ct/ (Ct + Yt). A stationary distribution that places

probability one-half on Rt = 0 is saying that half the time consumption is

zero. While a stationary distribution that places probability one-half on Rt =

1 is saying that half of the time households borrow an infinitely large amount

to cover the difference between consumption and income. It is extremely

unlikely that any modeler would knowingly seek to embed this assumption

in their model. Yet it is exactly this assumption that is embedded into a

model when it is assumed that consumption and income are not cointegrated

with cointegrating vector [1,−1].

Second, the literature currently contains several alternatives to the great

ratios hypothesis given in the introduction. For example, Atfield and Temple

(2010) study a model which allows for structural breaks, αt, in the cointe-

grating equation so that lnR∗t − αt is covariance stationary. One motivation
for rewriting the great ratios hypothesis in terms of the stationary distribu-

tion for Rt is that so long as αt/
√
t goes to zero such structural breaks can

be included in the deterministic component dt. This yields a unified great

ratios hypothesis.

For the reasons outlined above we propose the following reformulated

version of the great ratios hypothesis

HGR : Strictly positive, unbounded from above, I(1) variables Xt and Yt

satisfy the great ratios hypothesis if the stationary distribution for Rt,

where Rt ≡ Xt/ (Xt + Yt), places all of the probability mass on the

interior of [0, 1] .

Where economic theory strongly rejects a stationary distribution for Rt

that puts all of the probability mass on the endpoints of [0, 1] , we recommend
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that HGR be adopted as the maintained hypothesis. In those cases where

economic theory does not make a strong statement, inference must be made

about HGR. The remaining sections of the paper discuss the issues that arise

in making such inference.

3 Positive moments of Rt exist but are useless

for making inference about the great ratios

The stationary distribution (4) yields ERa
t = 1

2
for all a > 0. This strong

result regarding the positive moments of Rt raises the question of whether in-

ference could be made on the great ratios hypothesis using sample moments.

Let Ra denote the sample moment for Rt raised to the ath power.

Ra ≡ 1

T

T∑
t=1

Ra
t (8)

Then ERa = 1
2
and the variance of Ra is 1

4
as is established in theorem 3.

Theorem 3 Under the stationary distribution (4) and (5) the expected value
of the sample mean Ra defined in (8) is one-half and the variance of that

sample mean is one-quarter.

Proof. The result for the sample mean is straightforwardERa ≡ 1
T

∑T
t=1ER

a
t =

1
T

∑T
t=1

(
1
2
× 1 + 1

2
× 0
)
. The variance of the sample mean is

V ar
(
Ra
)

= E

(
Ra − 1

2

)2
Expanding the square yields

V ar
(
Ra
)

= E

(
1

T

T∑
t=1

Ra
t

)2
− 1

4
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Expanding the square of the sum yields

E

(
1

T

T∑
t=1

Ra
t

)2
=

1

T 2

T∑
i=1

T∑
j=1

ERa
iR

a
j

Using the stationary distribution ERa
iR

a
j = Pr (Rt = 1, Rt−1 = 1)×1a×1a+

Pr (Rt = 0, Rt−k = 0)× 0a × 0a which is equal to one-half. Thus

1

T 2

T∑
i=1

T∑
j=1

ERa
iR

a
j =

1

2

yielding V ar
(
Ra
)

= 1
4
.

Although theorem 3 provides the expectation of Ra and the variance of

Ra it turns out that these quantities are of no use in making inference about

the great ratios hypothesis. The problem is to be found in the distribution

of Ra which is established in theorem 4.

Theorem 4 Given the stationary distribution (4) the sample mean of Ra
t

has the probability distribution (9)

Pr (Ra
t ≤ θ) =

1

2
, θ ∈ [0, 1) (9)

The probability distribution (9) places zero probability on the interior

of [0, 1]. We are now in a position to understand why the sample positive

moments, Ra,are not useful in making inference about the great ratios hy-

pothesis. Every test must make an assumption about the distribution of Rt

under the hypothesis that the great ratios hypothesis is false. The natural

choice is the stationary distribution (4). But this choice carries the implica-

tion that the alternative hypothesis is the join of two hypotheses. The first of

these is that the great ratios hypothesis is false. The second is that that the

process has been running for an suffi ciently long time so that the sample is

drawn from the stationary distribution. Because of the nature of the station-

ary distribution any sample with some Rt in the interior of [0, 1] constitutes

perfectly strong evidence against the joint hypotheses just described. But,
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there is no logical way of separating the two hypotheses without bringing

to play additional information about when the process started. Elliot and

Müller (2006) provide a valuable discussion of some of the issues encountered

in making such a choice of distribution for the initial condition.

4 Exact likelihood and unit roots

Starting with a conditional likelihood written in terms of rt wemake use of the

fact that Rt is a monotonic transformation of rt to rewrite that conditional

likelihood in terms of Rt. We then use the fact that we know the stationary

distribution for Rt to obtain an exact likelihood function.

Assume that the dynamics of rt are well represented by a Gaussian AR(p)

process (10),

rt = (1 + ρ) rt−1 + ∆dt − ρdt +

p∑
i=1

βi∆rt−i + vt, vt˜N (0, σ) (10)

The conditional density is

f (rt|r̃t−1) =
1√
2πσ

exp

{
− v2t

2σ2

}
(11)

where r̃t−1 = (rt−1, . . . , rt−p−1).

Making use of the inverse transformation,

rt = g−1
(

1−Rt

Rt

)
. (12)

Using (12) we make a change of variable to Rt so that the conditional

density of Rt is

h
(
Rt|R̃t−1

)
=

1√
2πσ

exp

{
− ω2t

2σ2

}
1

R2t g
′(g−1

(
1−Rt
Rt

)
)
. (13)
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where

ωt = g−1
(

1−Rt

Rt

)
− (1 + ρ) g−1

(
1−Rt−1

Rt−1

)
−∆dt + ρdt

−
p∑
i=1

βi

(
g−1

(
1−Rt−i

Rt−i

)
− g−1

(
1−Rt−i−1

Rt−i−1

))

The likelihood conditional on the first p+ 1 observations is

L (RT , ...Rp+2|Rp+1, ..., R1) ≡
T∏

t=p+2

h
(
Rt|R̃t−1

)
(14)

Letting ϕ (Rp+1, ..., R1) represent the joint density of the first p+ 1 observa-

tions, the exact likelihood function, written in terms of Rt, is

L (RT , ..., R1) = L (RT , ...Rp+2|Rp+1, ..., R1)ϕ (Rp+1, ..., R1) (15)

If the process has been running for a suffi ciently long time then it is stan-

dard practice to use the stationary distribution for ϕ (Rp+1, ..., R1). Con-

sider the case where the sample (RT , ..., R1) lies strictly in interior of [0, 1]T

then L (RT , ...Rp+2|Rp+1, ..., R1) is finite. But the probability of drawing

(Rp+1, ..., R1) in the interior of [0, 1]p+1 is zero under the stationary distrib-

ution. Hence ϕ (Rp+1, ..., R1) = 0. Thus the exact likelihood is zero.

In the case where some of the Rt are on the boundary [0, 1] then the

conditional likelihood is undefined since it involves taking the logarithm of

zero or unity. In this case the exact likelihood is undefined.

Clearly, these results for the exact likelihood make likelihood based infer-

ence unfeasible if the stationary distribution is used for the initial condition.

At the beginning of his Handbook of Macroeconomics chapter, Jones

(2015) cites Einstein’s famous quote that ‘[I]t is quite wrong to try founding

a theory on observable magnitudes alone... It is the theory which decides

what we can observe.’Most likely Jones was referring to the theory of the

neoclassical growth model. Nevertheless, the insight is of considerable rele-

vance here.

The theory set out in section 2 provides three possible cases for the sample
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(R1, . . . , RT ) that we observe:

Case 1, HGR true Here the sample (R1, . . . , RT ) lies in the interior of [0, 1]T

and the dynamics keep Rt in the interior of [0, 1] .

Case 2, HGR false but R0 ∈ (0, 1) . Here the sample also lies in the interior

of [0, 1]T but the dynamics are pushing Rt to the boundaries of zero

and one.

Case 3, HGR is false R0 = 0 or 1 In this case the sample is a vector con-

taining zeros or ones only.

If one observes the sample envisaged in case 1 then inference is straightfor-

ward. For samples (R1, . . . , RT ) that lie in the interior of [0, 1]T the inferential

task is to distinguish between case 1 and case 2. Here the key difference be-

tween the two cases is whether the dynamics of the system are keeping Rt in

the interior of [0, 1] rather than pushing it towards the end points. We have

established in this section that the nature of the initial condition limits the

effectiveness of likelihood based inference on whether there exists a unit root

in the process for rt that would push Rt to the boundary.

5 Application

In an influential paper Lettau and Ludvigson (2013) ask the question of what

are the sources of fluctuations in real activity and financial markets. They

address this question by studying the dynamics of three variables, consump-

tion per capita, Ct, asset wealth per capita, At, and labour income per capita,

Yt.1 They subject logarithms of the individual series to standard unit root

tests and find that they are all I(1). To capture the dynamics they use a first

order VECM in the logarithms of the variables.

∆xt = ν + γα′xt−1 + Γ∆xt−1 + et (16)

1Details of the data and construction are provided in an appendix to the paper available
on Martin Lettau’s web page.
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where xt = (ct, at, yt)
′ and lower case letters denote logarithms of the level.

Lettau and Ludvigson find a single cointegrating vector α̂′ = (1,−0.18,−0.70) .

They find no other statistically significant cointegrating vector. Given the

finding that all three variables are I(1), the implication is that lnCt − lnYt

and lnAt − lnYt are I(1) processes – that is the great ratios hypothesis is

false. In previous sections we found it useful to construct the ratios RCY,t

and RAY,t that are defined as follows,

RCY,t =
Ct

Ct + Yt
(17)

RAY,t =
At

At + Yt
. (18)

By theorem 1, since lnCt − lnYt is I(1), with deterministic component

dominated by
√
t, the stationary distribution for RCY,t places probability

one-half on RCY,t = 1, probability one-half on RCY,t = 0 and probability zero

on RCY,t in the interior of [0, 1]. The same stationary distribution also holds

for RAY,t since lnAt− lnYt is I(1). However, the observed sample for both of

these ratios lies in the interior of the [0, 1] interval. Figure 1 provides some

visual information regarding how far the two ratios lie inside the unit interval

and whether there is evidence of dynamics that push RCY,t and RAY,t towards

the boundary.

Panel A of Figure shows Ri,t (i = CY,AY ), panel B of Figure plots

Ri,t against Ri,t−1. The data in panel A covers 1952Q1 to 2017Q3. In Fig-

ure the axes are chosen to extend over the [0, 1] interval on which the ratios

are defined so as to provide visual perspective on the task that cointegra-

tion based inference is asked to achieve. In Panel A there is little evident

variation in RCY,t and RAY,t relative to the [0, 1] interval on which they are

defined. Despite the results from the cointegration tests on the VECM, there

is no evidence in Panel A of dynamics pushing RCY,t and RAY,t towards the

boundary. In Panel B the red and blue points are the data clouds for the

263 observations on RCY,t and RAY,t. That these data clouds cover only a
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Figure 1: Great ratios for consumption, financial wealth and labour income,
United States
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very small part of the [0, 1]2 box should serve as a warning that reliance

on cointegration tests effectively means that the investigator is extrapolat-

ing outside of the domain of the sample to claim support for the hypothesis

that the stationary distributions for RCY,t and RAY,t place all of the proba-

bility mass on the endpoints of [0, 1]. There is no body of theory that can

justify such extrapolation. Econometricians regularly warn students of the

dangers of such extrapolation yet it is implicitly performed whenever unit

root and cointegration tests are applied to make inference on the great ratios

hypothesis.

5.1 Exact likelihood for VECM(1)

Here we address the question of whether the likelihood based cointegration

tests referred to above suffer from the same initial value problem that we

established exist for unit root tests. Again we proceed by finding the condi-

tional and exact likelihoods for the VECM.

Assume that et in (16) is Gaussian with mean vector 0 and covariance

matrix Σ then, the density of xt conditional on xt−1 and xt−2 is

f (xt|xt−1,xt−2) = (2π)−
3
2 |Σ|−

1
2 exp

{
−1

2
e
′

tΣ
−1et

}
.
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Now making use of (17) and (18) we obtain after some manipulation

lnCt = ln
RCY,t

1−RCY,t

+ lnYt

lnAt = ln
RAY,t

1−RAY,t

+ lnYt

we can now make a change of variables

xt =


ln

RCY,t
1−RCY,t + yt

ln
RAY,t
1−RAY,t + yt

yt


The Jacobian Jt is

Jt =


1−2RCY,t

RCY,t(1−RCY,t)
0 1

0
1−2RAY,t

RAY,t(1−RAY,t)
1

0 0 1


we can now write ωt in terms of the vector Rt, where Rt = (RCY,t, RAY,t, yt).

ωt =


∆ ln

RCY,t
1−RCY,t + ∆yt

∆ ln
RAY,t
1−RAY,t + ∆yt

∆yt

−γα′


ln
RCY,t
1−RCY,t + yt

ln
RAY,t
1−RAY,t + yt

yt

−Γ


∆ ln

RCY,t−1
1−RCY,t−1 + ∆yt−1

∆ ln
RAY,t−1
1−RAY,t + ∆yt−1

∆yt−1


The conditional density of Rt is,

h (Rt|Rt−1,Rt−2) = (2π)−
3
2 |Σ|−

1
2 exp

{
−1

2
ω′tΣ

−1ωt

}
|J t|

Yielding the following conditional likelihood,

L (RT , ...R3|R2,R1) =

T∏
t=p+2

h (Rt|Rt−1,Rt−2)

Let λ (R2,R1) be the distribution of the initial condition. Then, the exact
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likelihood is

L (RT , ...,R1) = L (RT , ...R3|R2,R1)λ (R2,R1)

Factor λ (R2,R1) into χ (RCY,2, lnRAY,tRAY,2, RCY,1, RAY,1|y2, y1) π (y2, y1)

now we know that the stationary distribution for (RCY,2, RAY,2, RCY,1, RAY,1)

places all of the probability mass on the corners of [0, 1]2 thus the distri-

bution of (RCY,2, RAY,2, RCY,1, RAY,1) conditional on (y2, y1) must equal the

unconditional distribution of (RCY,2, RAY,2, RCY,1, RAY,1). Since the samples

in the interior of [0, 1]2 occur with probability zero the exact likelihood is zero

for such samples. As discussed in Elliot and Müller (2006) one can try and

specify a distribution other than the stationary distribution for the initial

condition. But, unless there is strong information about when the system

started and the nature of the initial condition such procedures are essentially

ad hoc.

6 Conclusion

We have developed a formal framework for evaluating the current econo-

metric approach to testing the great ratios. Application of that framework

demonstrates that existing tests are invalid for the great ratios hypothesis.

We have proposed an alternative form of the great ratios hypothesis that

is expressed in terms of the stationary distribution for a variable Rt that

is constructed from the numerator and denominator in the candidate great

ratio. The advantage of this alternative formulation is that it is expressed in

a way that allows economic theorists and modelers to state whether or not

the theory supports the hypothesis. Where theory supports the great ratios

hypothesis we suggest that it should be treated as a maintained hypothesis

rather than a testable hypothesis.

In cases where there is no guidance from theory unit root and cointe-

gration tests face the problem that the exact likelihood is zero when the

stationary distribution for Rt is used for the distribution of the initial con-

dition. Inference based on the conditional likelihood or on some assumed
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distribution for the initial condition is ad hoc and need support from other

information. We have provided an example in Figure 1 to show how visual

information can help to interpret the results of unit root and cointegration

tests of the great ratios hypothesis.

A Proofs and technical material

Lemmas 1 states the well known property that if ψ (1) 6= 0 then, zt−z0√
t
is

approximately Gaussian , see Phillips and Solo (1992).

Lemma 1 If ψ (1) 6= 0 then, zt defined in (3) has the property that

Pr

(
zt − z0√

t
< a

)
= Φ

 a√
tσ2ψ2 (1)

+ κt

where lim
t→∞

κt = 0.

Lemma 2 extends the result in lemma 1 to the vector
(
zt−z0√

t
, zt−k−z0√

t

)′
.

Lemma 2 If ψ (1) 6= 0 then, the vector
(
zt−z0√

t
, zt−k−z0√

t−k

)′
is the sum of two

vectors vt and ξt. Where vt ≡ (v1t, v2t)
′ that is normally distributed with

mean the zero vector and covariance matrix
∑

t

∑
t

= σ2

 1
√

t−k
t√

t−k
t

1

 ,
lim
t→∞

ξt=(0, 0)′ .

The proof of theorem 1 is split into two parts. Part 1 deals with the uni-

variate limiting distribution (4) while part 2 deals with the bivariate limiting

distribution (5).

Proof of theorem 1: After some manipulation of Rt in (1), using lemma

1 and the notation that δt ≡
g−1( 1−θθ )−dt√

t
we obtain Pr (Rt < θ) =

18



1 − Pr
(
δt ≥ zt−z0√

t

)
. Now lim

t→∞
δt = 0 and by lemma 1 the term zt−z0√

t

converges to N (0, 1) . The normal distribution is symmetric about zero

and thus the probability that a normal random variable is less than

zero is one-half, Thus lim
t→∞

Pr (Rt < θ) = 1− 1
2

= 1
2
.

Turning to the joint density Pr (Rt ≤ θ, Rt−k ≤ θ) = 1−Pr
(
δt ≥ zt−z0√

t
, δt−k ≥ zt−k−z0√

t−k

)
.

We can factor the joint probability as

Pr

(
δt ≥

zt − z0√
t
, δt−k ≥

zt−k − z0√
t− k

)
= Pr

(
δt ≥

zt − z0√
t
|δt−k ≥

zt−k − z0√
t− k

)
×Pr

(
δt−k ≥

zt−k − z0√
t− k

)
(19)

Since zt − z0 = zt−k − z0 + ψ (1) (εt + . . .+ εt−k+1) + ηt − ηt−k+1 we

conclude that the limit as t goes to infinity of the first term is 1 while for

the second term the limit is one-half. Thus lim
t→∞

Pr (Rt ≤ θ, Rt−k ≤ θ) =
1
2
.
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