
Neural-Network Approximation of Reduced
Forms for CGE Models Explained

by Elementary Examples

CoPS Working Paper No. G-348, November 2024

The Centre of Policy Studies (CoPS), incorporating the IMPACT project, is a research centre at Victoria
University devoted to quantitative analysis of issues relevant to economic policy.
Address: Centre of Policy Studies, Victoria University, PO Box 14428, Melbourne, Victoria, 8001
home page: www.vu.edu.au/CoPS/ email: copsinfo@vu.edu.au Telephone +61 3 9919 1877

Peter B. Dixon,
Maureen T. Rimmer

And
Florian Schiffmann

Centre of Policy Studies,
Victoria University

ISSN 1 921654 02 3 ISBN 978-1-921654-57-2

About us
Researchers at the Centre of Policy Studies have a 45-year history of
continuous achievement in the development, application and
dissemination of large-scale economic models. Our models and software
are used around the world to analyse a diverse range of economic
issues. CoPS’ funders include: Australian federal and state government
departments; private firms and universities in many parts of the world;
central government agencies such as finance and trade ministries in
many countries; and international development organisations. The
Centre’s GEMPACK software, used for solving large economic models,
is used at more than 700 sites in over 95 countries.

Citation
Dixon, Peter B., Maureen T. Rimmer and Florian Schiffmann
(2024), “Neural-Network approximation of reduced forms for
CGE models explained by elementary examples” Centre of
Policy Studies Working Paper No. G-348, Victoria University,
November 2024.

1

Neural-Network approximation of reduced forms for CGE models explained by
elementary examples

by

Peter Dixon, Maureen Rimmer, Florian Schiffmann

Centre of Policy Studies, Victoria University, Melbourne

November 12, 2024

Abstract:

Neural Network (NN) theory provides a powerful method for approximating the reduced
form of a large-scale multi-regional CGE model. However, NN methods are relatively
unknown by CGE modellers. We set out the theory of the NN approximation method and
demonstrate how it works with simple examples.

The paper is motivated by a project for a client with limited in-house CGE capabilities but
requiring the ability to obtain CGE solutions at short notice in a confidential environment.
We describe how an NN approximation meets the client’s needs. The NN approximation is
more accurate and broadly applicable than earlier approaches that CGE modellers have used
based on regression equations and matrices of elasticities.

JEL codes

C45, C68

Key words:

Neural network method explained; Neural network approximations to reduced forms; Multi-regional
computable general equilibrium models

2

Contents

1. Introduction 3

2. Motivation 3

3. Using Neural Networks to derive explicit forms for Gq and Hq,i in (2.1) and (2.2) 5

4. NN computations in elementary examples 8

5. Using NN to develop the Destructive Events Tool (DET) 15

6. Concluding remarks 17

References 17

3

Neural-Network approximation of reduced forms for CGE models explained by
elementary examples

by

Peter Dixon, Maureen Rimmer, Florian Schiffmann

Centre of Policy Studies, Victoria University, Melbourne

November 12, 2024

1. Introduction

Florian Schiffmann suggested using a Neural Network (NN) approach to approximate the
reduced form of a CGE model. He then implemented it in the application motivating this
paper. Peter Dixon and Maureen Rimmer, with advice from Florian, drafted the paper. Their
aim was to teach themselves about what Florian was doing and, perhaps in the process, help
to demystify NN ideas in the minds of other CGE modellers.1

Section 2 explains the role of reduced forms in transferring CGE capabilities to the clients of
CGE modeling groups. As an example, we introduce the destructive events tool (DET).

Section 3 sets out the formal mathematics of the NN approach. In section 4 we give the
mathematics intuitive substance by working through elementary examples. In the examples,
we specify highly simplified reduced forms and show how these can be approximated by an
NN search.

Section 5 is a brief report on our experience in using NN to construct DET. The construction
of DET is part of a larger project. Further information on NN will be included in a report on
the larger project which we are preparing with other colleagues at the Centre of Policy
Studies.

Section 6 contains concluding remarks.

2. Motivation

Computable general equilibrium (CGE) modelling offers insights on policies for the
environment, agriculture, trade, and other areas. However, policy-relevant CGE models are
complex. Successful application of CGE models requires people with considerable training
and experience. Organizations without CGE expertise can go to outside providers, but this is
an unattractive option for quick-turnaround projects, especially if the results must be
confidential.

Rose et al. (2017) and Dixon et al. (2019) developed mimic tools that clients use to
approximate CGE solutions relevant to their interests. These tools were formed by
conducting a limited number of CGE simulations. From the simulations, they were able to fit
regression equations or estimate elasticities that encapsulate CGE relationships between
endogenous and exogenous variables. These relationships became the basis of mimic tools.
The attractive feature of these tools is that they can be applied easily in-house with negligible

1 The only CGE application of NN in CGE modelling of which we are aware is Britz et al. (2021) who used NN for
sensitivity analysis. In the Britz et al. paper, readers are assumed to know how NN works.

4

turn-around time by clients without CGE experience. On the other hand, the number of
exogenous variables included in these mimic tools and the range of applicable shocks is
limited, and non-linearities present in the CGE model are generally missed.

This paper describes an approach based on Neural Network (NN) theory for creating mimic
tools. This approach overcomes the limitations of the earlier regression/elasticity methods.

To motivate the explanation of the NN approach we briefly describe a destructive events tool
(DET). This was built for a client who wanted to equip itself with the ability to assess at
short notice, in a secure environment, the likely regional and national economic effects of an
adverse event with any given destruction/death/evacuation characteristics occurring at any
location.

The underlying economic model for DET is a version of TERM2. TERM is a dynamic, CGE
modelling system. It has been implemented for single countries disaggregated into sub-
national regions and for multi-country models with subnational regions. In the application
motivating this paper, TERM was formulated for a single national economy divided into 29
sub-national regions and 23 industries. The model can receive shocks representing capital
destruction in each industry and sub-national region, and deaths in and evacuations from each
sub-national region. The output from the model includes national and sub-national economic
variables such as GDP and output by industry. In reduced form the model can be visualized
as:

()qgdp(q) G k(r, j);D(r);E(r) for all r REG, j IND
q {nation, 29 regions}

= ∈ ∈

∈
 (2.1)

()q,ioutput(q, i) H k(r, j);D(r);E(r) for all r REG, j IND
for q {nation, 29 regions}, and i {23 industries}

= ∈ ∈

∈ ∈
 (2.2)

where the exogenous variables are
k(r,j), the percentage of the capital stock in industry j in region r that is destroyed or

made unusable by the adverse event;
D(r), the number of deaths in region r; and
E(r), the number of evacuations from region r;

and the endogenous variables are
gdp(q), the percentage change in GDP in region q (national and sub-national) caused by

the adverse event; and
output(q,i), the percentage change in the output of industry i in region q (national and

sub-national).

For any given values of the exogenous variables, we can obtain values for the endogenous
variables by solving the model. But that option is not available to our client. What the client
needs are functional forms for Gq and Hq,i. Then by inserting into (2.1) and (2.2) values for
the exogenous variables suitable for the event under consideration, the client can evaluate the
endogenous variables.

2 The Enormous Regional Model. The TERM methodology was pioneered by Horridge et al (2005). In recent years, it has
been developed and extended by Wittwer and other colleagues at the Centre of Policy Studies, see for example Wittwer
(2017 and 2024) and Wittwer and Horridge (2018).

5

Thus, the challenge for us was to derive explicit functional forms for Gq and Hq,i that could be
used by the client.

3. Using Neural Networks to derive explicit forms for Gq and Hq,i in (2.1) and (2.2)

In developing explicit forms for Gq and Hq,i we ran about 150,000 TERM simulations with
different sets of values for the exogenous variables. This gave us a dataset with 150,000
observations for the vectors of exogenous variables and the corresponding values for the
endogenous variables. Then we derived Gq and Hq,i by fitting Neural Network (NN)
equations to 135,000 observations and used the remaining 15,000 observations for out-of-
sample testing.

We start the explanation of how the NN method uses the data by specifying in (3.1) to (3.5)
the mathematical form of the NN optimization problem. In explaining the notation, we
introduce various NN concepts: layer, input layer, output layer, hidden layer, node, weights,
bias, edge and activation function. Before reviewing the mathematics in detail, it is useful to
note that:

(a) N1 in (3.2) is the number of exogenous variables;
(b) NJ in (3.5) is the number of endogenous variables;
(c) Exog

rV (t) for t = 1, …, 135,000 is the data for the rth exogenous variable, and
Endo

kV (t) is the data for kth endogenous variable;
(d) JkV (t) , for k = 1, …, NJ, is the fitted value for kth the endogenous variable when

the exogenous variables are from observation t; and
(e) the Fs are pre-specified functions.

The NN problem takes the form:

choose values for Ws to minimize

 ()
NJ 2Endo

k Jk
k 1 t OBS

V (t) V (t)
= ∈

−∑ ∑ (3.1)

subject to
Exog

1r rV (t) V (t)= , for all t and r= 1, 2, …, N1 ` (3.2)

N1

2r 2r 1 ,2r 1 b,2r
1

V (t) F W * V (t) W
=

 
= + 

 
∑

 



, for all t and r= 1, 2,…, N2 (3.3)

 … … …

N(J 2)

(J 1)r (J 1)r (J 2) ,(J 1)r (J 2) b,(J 1)r
1

V (t) F W * V (t) W
−

− − − − − −
=

 
= + 

 
∑

 



, for all t and r= 1, 2,…, N(J-1) (3.4)

and
N(J 1)

Jk (J 1) ,Jk (J 1) b,Jk
1

V (t) W * V (t) W
−

− −
=

= +∑
 



 for all t and k = 1, , 2, …NJ (3.5)

With given values for the Ws (often referred to as weights although they can positive or
negative and need not sum to one), we could work through (3.2) to (3.5) to obtain VJk(t). The
objective is to set the Ws so that the resulting fitted values for VJk(t), k = 1, …, NJ minimize
(3.1).

6

The constraints in the optimization problem are set out in what is referred to in NN as layers,
each of which contains nodes. The node values in one layer are transmitted to the next layer
by transmission lines known as edges.

The first layer, known as the input layer, is specified by (3.2). This layer has a node for each
exogenous variable. The values at these nodes [V1r(t)] are supplied by the observations for
the exogenous variables.

The final layer (layer J), known as the output layer, is specified by (3.5). This layer has a
node for each endogenous variable. The value at the kth node [VJk(t)] is the fitted value for
endogenous variable k and is formed as a linear combination of the node values in the
second-last layer (layer J-1) plus an intercept term. The weights used in transferring the
value in layer J-1 at node  to layer J at node k is denoted by (J 1) ,JkW − 

. The intercept term

(often referred to as bias) introduced in layer J at node k is denoted by b,JkW .

If there are no layers between the input layer and the output layer, the NN problem reduces to
ordinary least squares.

The layers between the input and output layers are known as hidden layers. These layers can
have any number of nodes. The value at a node [Vmr(t), m = 2, .., J-1 and r = 1, …Nm] in a
hidden layer is formed by applying an activation function, the Fs in (3.3) – (3.4). The input
to an F function is a linear combination of node values in the previous layer plus an intercept
term. The weights used in transferring the value in layer m-1, node  to layer m, node r is
denoted by (m 1) ,mrW − 

. The intercept term in layer m at node r is denoted by b,mrW .

Figure 1 illustrates a 3-layer NN computation in which there are two exogenous variables and
one endogenous variable, and the second layer has two nodes.

While (3.1) – (3.5) provides a formal definition of the process by which the reduced-form
equations in (2.1) – (2.2) can be approximated by NN fitting, it leaves important questions
unanswered. How do we determine the number of hidden layers and the number of nodes in
each of them? What form should the activation functions take? Finally, does the method
give a close approximation to the Gq and Hq,i functions?

The answer to the last question is yes, but the answers to the other questions are indefinite.
All we can do is report our experience in section 5 and show that the method worked.
However, we can say that the activation functions chosen in NN analyses are typically
simple. For example, in our application, we used the ReLU form3 in generating the node
values in all hidden layers, that is we evaluated the nodes in the hidden layers according to:

N(m 1)

mr (m 1) ,mr (m 1) b,mr
1

V (t) Max 0, W * V (t) W
−

− −
=

 
= + 

 
∑

 



,

 for all t, m= 2, …, J-1, and r= 1, 2,…, Nm (3.6)

In the next section, we illustrate the surprising flexibility of (3.6) in elementary examples of
NN computations.

3 This is the rectified linear unit (ReLU) function.

7

Figure 1. An NN approximation of the value of the endogenous variable in a 3-layer computation with 2 exogenous variables and
1 endogenous variable

V11

V12
W12,22V12

W12,21V12

W11,22V11

W11,21V11 V21

V22

Wb,21

Wb,22

W21,31V21

W22,31V22

V31

Input layer Hidden layer Output layer

Wb,31

1.0

1.0

1.0

8

4. NN computations in elementary examples

We present three examples in which there are two exogenous variables and just one
endogenous variable. Then we discuss the NN method for a case in which there is more than
one endogenous variable.

Example 1: a linear model

What happens if the true reduced form for our model is linear, and not knowing this, we use
an NN computation to approximate the reduced form? Will the hidden layers get in the way
of finding the true linear reduced form?

To answer this question, we assume that the endogenous variable is generated by a linear
equation with two exogenous variables:

Endo Exog Exog
1 2V (t) V (t) V (t)= + , for all t ` (4.1)

How well can we approximate (4.1) with a 3-layer NN search in which the activation
functions are ReLU and second layer has two nodes? [The first layer has two nodes (number
of exogenous variables and the third layer has 1 node (the fitted value of the single
endogenous variable)].

With this setup we look for W values to minimize

 ()2Endo
31

t OBS
V (t) V (t)

∈

−∑ (4.2)

subject to
Exog

1r rV (t) V (t)= for all t and r= 1, 2 ` (4.3)

2

2r 1 ,2r 1 b,2r
1

V (t) Max 0, W * V (t) W
=

 
= + 

 
∑

 



 for all t and r= 1, 2 (4.4)

and
2

31 2 ,31 2 b,31
1

V (t) W * V (t) W
=

= +∑
 



 for all t (4.5)

After a little experimenting, we found that NN could exactly reproduce the linear model with
the following weights:

11,21 12,21W W 1= = (weights for transmitting node values from layer 1 to 1st node in layer 2)

11,22 12,22W W 1= = − (weights for transmitting node values from layer 1 to 2nd node in layer 2)

b,2rW 0= for r = 1, 2 (intercept terms for the nodes in layer 2)

21,31W 1= , 22,31W 1= − (weights for transmitting node values from 2 to the single node at 3)

b,31W 0= (intercept term for the node in layer 3)
 (4.6)
With these weights, the node values in layer 2 are given by

() 11 12 11 12
21 11 12

V (t) V (t) if V (t) V (t) 0
V (t) Max 0,V (t) V (t)

0 otherwise
+ + ≥

= + = 


 (4.7)

and

9

() 11 12 11 12
22 11 12

V (t) V (t) if V (t) V (t) 0
V (t) Max 0, V (t) V (t)

0 otherwise
− − + <

= − − = 


 (4.8)

At layer 3, we have

31 21 22V V V= − . (4.9)

If 11 12V (t) V (t) 0+ ≥ then substituting from (4.7) and (4.8) into (4.9) gives

 31 11 12V (t) V (t) V (t)= + (4.10)

If 11 12V (t) V (t) 0+ < then substituting from (4.7) and (4.8) into (4.9) again gives

 31 11 12V (t) V (t) V (t)= + (4.11)

Thus, under all circumstances, we see from (4.1) and (4.3) that

 Exog Exog Endo
31 1 2V (t) V (t) V (t) V (t)= + = (4.12)

With the choice of weights in (4.6), the objective function (4.2) is optimized with value zero.
This confirms that if the reduced form is linear then NN can exactly replicate it.

Example 2: a quadratic model

In presenting this example, we simplify the notation by omitting the “t” arguments.

We assume that the endogenous variable is generated by a quadratic equation with two
exogenous variables:

 ()2Endo Exog Exog
1 2V V V= + , (4.13)

where Exog
1V and Exog

2V are drawn randomly and independently from rectangular distributions

each with range [-0.5, 0.5]. The dots in Figure 2 show values of Exog
1V + Exog

2V with the

corresponding value of EndoV for 100 observations of Exog Exog
1 2(V ,V) .

How well can we approximate (4.13) with a 3-layer NN computation in which the second
layer has 4 nodes and the activation functions are ReLU?

We won’t answer this question directly. But we will show that such an NN computation does
at least as well as the fit obtained by the 4-piece linear approximation indicated by 4 straight
lines in Figure 2 and defined by:

()
()
()

Exog Exog Exog Exog
1 2 1 2

Exog Exog Exog Exog
1 2 1 2

Endo
Exog Exog Exog Exog

1 2 1 2

Exog Exog Exog Exog
1 2 1 2

1.5*(V V) 0.5 if V V 0.5

0.5* V V if 0 V V 0.5
V

0.5* V V if 0 V V 0.5

1.5* V V 0.5 if 0.5 V V

 + − + ≥


+ ≤ + ≤
=
− + ≥ + ≥ −

− + − − ≥ +

 (4.14)

We will do this by showing that the 4-piece linear approximation is delivered by the
following weights applied to generate node values in the NN layers:

11,21W 0.5= ; 12,21W 0.5= ; b,21W 0= [weights to generate value at layer 2, node 1]

11,22W 1= ; 12,22W 1= ; b,22W 0.5= − [weights to generate value at layer 2, node 2]

10

11,23W 0.5= − ; 12,23W 0.5= − ; b,23W 0= [weights to generate value at layer 2, node 3]

11,24W 1= − ; 12,24W 1= − ; b,24W 0.5= − [weights to generate value at layer 2, node 4]

21,31W 1= ; 22,31W 1= ; 23,31W 1= ; 24,31W 1= ; b,31W 0= [weights at layer 3, node 1]
 (4.15)

Demonstration that the weights specified in (4.15) deliver (4.14)

Working with (3.2) – (3.3) and using the weights in (4.15), we obtain node values in layer 2:

[]
Exog Exog

11 12 1 2
21 11 12 Exog Exog

1 2

0.5*(V V) if V V 0
V Max 0,0.5*V 0.5*V

0 if V V 0

 + + ≥= + = 
+ <

 (4.16)

[]
Exog Exog

11 12 1 2
22 11 12 Exog Exog

1 2

V V 0.5 if V V 0.5
V Max 0,V V 0.5

0 if V V 0.5

 + − + ≥= + − = 
+ <

 (4.17)

[]
Exog Exog

11 12 1 2
23 11 12 Exog Exog

1 2

0.5*(V V) if V V 0
V Max 0, 0.5*V 0.5*V

0 if V V 0

− + + ≤= − − = 
+ >

 (4.18)

[]
Exog Exog

11 12 1 2
24 11 12 Exog Exog

1 2

(V V) 0.5 if V V 0.5
V Max 0, V V 0.5

0 if V V 0.5

− + − + ≤ −= − − − = 
+ > −

 (4.19)

Using the layer-3 weights from (4.15) in (3.5), we obtain the fitted value, V31, for the
endogenous variable as:

31 21 22 23 24V V V V V= + + + (4.20)

Consistent with (4.14) we find that the fitted value, V31, of EndoV is determined as follows:

if Exog Exog
1 2 V V 0.5+ ≥ then,

31 11 12 11 12 11 12V 0.5*(V +V) (V +V) 0.5 1.5*(V +V) 0.5= + − = − (4.21)

if Exog Exog
1 2 0 V V 0.5≤ + ≤ then,

31 11 12V 0.5*(V +V)= (4.22)

Exog Exog
1 2if 0 V V 0.5≥ + ≥ − then,

31 11 12V 0.5*(V +V)= − (4.23)

and Exog Exog
1 2if 0.5 V V− ≥ + then,

31 11 12 11 12 11 12V 0.5*(V +V) (V +V) 0.5 1.5*(V +V) 0.5= − − − = − − (4.24)

Interpretation

The forecasting R-squared for the piecewise approximation defined by (4.14) and illustrated
in Figure 2 is 0.95. This has been achieved without optimizing. We can conclude that an NN
computation with ReLU activation functions and one hidden layer containing 4 nodes would
do even better than this. It is also apparent that with more nodes in the hidden layer, the
approximation function would have more pieces and give any desired level of accuracy.

11

Figure 2. Quadratic model approximated by 4-segment piecewise linear function

We chose the illustrative model (4.13) because it could be represented easily in a 2-
dimensional diagram. It is clear that NN piecewise approximations could be used to handle
more general polynomial forms.

Example 3: A Leontief function

In this example, we assume that the endogenous variable is generated by

 ()Endo Exog Exog
1 2V Max V ,V= , (4.25)

A reduced form along the lines of (4.25) might arise if Exog Exog
1 2V and V refer to production

facilities for a key product and EndoV is GDP. The effect on GDP might be severe if there are
large negative shocks to both production facilities but relatively mild if just one facility is
destroyed, allowing users of the critical commodity to be supplied from the other facility.

We show that (4.25) can be reproduced exactly with a 3-layer NN computation in which the
second layer has 4 nodes and the activation functions are ReLU.

Consider the following settings for the weights:
11,21W 0.5= ; 12,21W 0.5= ; b,21W 0= [weights to generate value at layer 2, node 1]

11,22W 0.5= − ; 12,22W 0.5= − ; b,22W 0= [weights to generate value at layer 2, node 2]

11,23W 0.5= ; 12,23W 0.5= − ; b,23W 0= [weights to generate value at layer 2, node 3]

11,24W 0.5= − ; 12,24W 0.5= ; b,24W 0= [weights to generate value at layer 2, node 4]

21,31W 1= ; 22,31W 1= − ; 23,31W 1= ; 24,31W 1= ; b,31W 0= [weights at layer 3, node 1]
 (4.26)

0

0.25

0.5

0.75

1

-1 -0.5 0 0.5 1

EndoV

1 2
Exog ExogV V+

12

Demonstration that the weights specified in (4.26) deliver (4.25)

Working with (3.2) – (3.3) and using the weights in (4.26), we obtain node values in layer 2:

[]
Exog Exog

11 12 1 2
21 11 12 Exog Exog

1 2

0.5*(V V) if V V 0
V Max 0,0.5*V 0.5*V

0 if V V 0

 + + ≥= + = 
+ <

 (4.27)

[]
Exog Exog

11 12 1 2
22 11 12 Exog Exog

1 2

0.5*(V V) if V V 0
V Max 0, 0.5*V 0.5*V

0 if V V 0

− + + ≤= − − = 
+ >

 (4.28)

[]
Exog Exog

11 12 1 2
23 11 12 Exog Exog

1 2

0.5*(V V) if V V 0
V Max 0,0.5*V 0.5*V

0 if V V 0

 − − ≥= − = 
+ <

 (4.29)

[]
Exog Exog

11 12 1 2
24 11 12 Exog Exog

1 2

0.5*(V V) if V V 0
V Max 0, 0.5*V 0.5*V

0 if V V 0

− − − ≤= − + = 
− >

 (4.30)

Using the layer-3 weights from (4.26) in (3.5), we obtain the fitted value, V31, for the
endogenous variable as:

31 21 22 23 24V V V V V= − + + (4.31)

From (4.27) and (4.28) we see that under all circumstances,

 21 22 11 12V V 0.5*(V V)− = + (4.32)

From (4.29) and (4.30) we see that under all circumstances,

 23 24 11 12V V 0.5* V V+ = − (4.33)

Then using (4.31), (4.32) and (4.33) we obtain

 ()31 11 12V Max V ,V= (4.34)

This confirms that the Leontief function can be reproduced by an NN-computation with
ReLU activation functions.

Example 4. Dealing with more than one endogenous variable

If there is more than one endogenous variable, then we could perform a separate NN
computation for each one. However, by solving a single NN problem encompassing multiple
endogenous variables, as in (3.1) to (3.5), we can economize on the dimension of the NN
optimization problem.

To gain intuition on how this works, we combine examples 1 and 2. We assume that there
are two endogenous variables generated by 2 exogenous variables according to:

 ()2Endo Exog Exog
1 1 2V V V= + (4.35)

 Endo Exog Exog
2 1 2V V V= + (4.36)

How well can we approximate (4.35) and (4.36) with a 3-layer NN computation in which the
second layer has 4 nodes and the activation functions are ReLU? As in example 2, we don’t
answer this question directly. We specify weights and show that they generate good

13

approximations to the true reduced-form equations, thereby demonstrating that an NN
optimization procedure would generate good approximations.

The weights we choose to determine the values of the nodes in the second layer and the value
of the first node in the third layer are those given in example 2 by (4.15). The weights we
choose to determine the value of the second node in the third are

21,32W 2= ; 22,32W 0= ; 23,32W 2= ; 24,32W 0= ; b,32W 0= (4.37)

With this choice of weights, the values at the nodes in the second layer are given by (4.27) to
(4.30), and the value at the first node of the third layer is given by (4.21) to (4.24).
Consequently, with our chosen weights the NN approximation for Endo

1V is the same as the 4-
piece linear approximation illustrated in Figure 2 for example 2. What about the
approximation for Endo

2V ? By working through Figure 3, we can see that the NN fit for Endo
2V

is exact.

In this example we have lost no accuracy by combining the NN computations for the 2
endogenous variables into a single computation. At the same time, we have reduced the
number of weights that need to be determined. In two separate computations we have a total
of 34 weights: 17 for each computation made up of 8 weights to transmit information from
the first layer to the second layer plus 4 bias weights at the second layer plus 4 weights to
transmit information from the second layer to the third layer plus 1 bias weight at the third
layer. In a combined computation there are 22 weights: 8 weights to transmit information
from the first layer to the second layer plus 4 bias weights at the second layer plus 8 weights
to transmit information from the second layer to the third layer plus 2 bias weights at the third
layer.

More generally, the determination of approximation functions for NJ endogenous variables in
NJ separate neural network problems with N1 exogenous variables and N2 nodes in 1 hidden
layer requires the estimation of NJ*[N1*N2+N2+N2+1] weights. This is reduced to
[N1*N2+N2+ N2*NJ +NJ] weights in the combined problem. As we will see in section 5,
this is a huge saving when there are large numbers of exogenous and endogenous variables.
The advantages of the combined approach are accentuated in problems with more than one
hidden layer.

Our example in which there was no loss of accuracy in the combined problem as we go from
one endogenous variable to two is rather a special case, facilitated by the second reduced
form equation being linear. Nevertheless, it illustrates a broadly applicable idea.

If we have successfully implemented a neural network approximation of reduced forms for
NJ endogenous variables, then it is likely that we can extend this to additional endogenous
variables in an expanded neural network optimization problem with extra weights only in the
last layer. These are necessary to obtain the approximation functions for the additional
endogenous variables. The number of extra weights is []NJ * N(J 1) 1∆ − + where NJ∆ is the
number of additional endogenous variables and N(J-1) is the number of nodes in the last
hidden layer. Linear combinations of the functions at the last hidden layer can give
considerable flexibility in approximating the reduced forms for the additional endogenous
variables. This is illustrated in Figure 3 in which the functions used in approximating Endo

1V
are combined with new weights in approximating Endo

2V .

14

Figure 3. Model with 2 exogenous and 2 endogenous variables approximated by an NN
computation with a single 4-node hidden layer

The solid red curve is the true reduced form for Endo
1V and the red straight line is the true reduced form for

Endo
2V . The 2-piece linear line aob is the V21 function defined in (4.16). The 2-piece linear line hcb is the

V22 function defined in (4.17). The 2-piece linear line eod is the V23 function defined in (4.18). The 2-piece
linear line gfd is the V24 function defined in (4.19). With the weights defined in (4.15) for the first node in
the third layer, we obtain, as in example 2, the approximation for Endo

1V given by the four linear pieces, hn,
no, om and mg. In determining the approximation for Endo

2V , the weights for the second node in the third
layer defined by (4.37) eliminate the V22 and V24 functions. At the same time, they tilt the ao and the eo
pieces of the V21 and V23 functions so that they become coincident with the Endo

2V line in the north-east and
south-west quadrants.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2
Endo EndoV ,V

1 2
Exog ExogV V+

1
EndoV

1
EndoV

2
EndoV

2
EndoV

j

15

5. Using NN to develop the Destructive Events Tool (DET)

This section provides a brief description of our experience in constructing DET to
approximate the reduced form for the model described by (2.1) – (2.2).

As mentioned earlier, we created a database for DET by conducting 150,000 TERM
simulations. The values for the 725 exogenous variables (capital destruction in 23 industries
and 29 regions, and deaths and evacuations in 29 regions) were chosen via a process
involving random choice of location and other characteristics of the event. We recorded
results for 864 endogenous variables. These included GDP and employment by region, and
output by industry and region.

Each TERM simulation took about 20 seconds on our 32 core Ryzen machine. The
simulations were conducted with GEMPACK version 12.2. We used the Runge-Kutta
Dormand Prince method with adaptive step size and an epsTolerance value of 0.1 (see
Horridge et al., 2018, GEMPACK Manual v. 12.2). Conducting the 150,000 simulations
took about 3 days using 16 parallel jobs on a 32 core machine.

From the simulations, we extracted 135,000 data points, with each data point consisting of
values for 725 exogenous variables and 864 endogenous variables. Using these data, we
constructed (“trained”) an NN containing an input layer with 725 nodes (one for each
exogenous variable) and an output layer with 864 nodes (one for each endogenous variable).
Between the input and output layers we inserted 4 hidden layers each containing 725 nodes.
The activation functions were ReLU. The loss function used in optimizing the network was
mean squared error.

The total number of weights in the resulting network was 2,732,664
[=4*(725*725 +725)+725*864+864)]. The large number of hidden layers was required to
appropriately represent the non-linearities in the CGE model and allow for accurate
prediction of the effects of both small-scale and large-scale shocks. The optimization was
done using the Adam optimizer as implemented in a tensorflow package (see
https://www.tensorflow.org/). We chose to terminate after 1000 optimisation steps, by which
time the value of the loss function for the training data did not change anymore. The
optimization of the neural network took approximately 1 hour on a standard desktop machine.

Using a single NN calculation rather than separate calculations for each endogenous variable
sharply reduced the number of weights for which we had to find optimal values. If we had
attempted to solve 864 separate NN problem with 4-hidden layers each having 725 nodes,
then the total number of weights would have been close to 2 billion [={4*(725*725
+725)+725+1)}*864].

We supplied the client with the NN approximation functions for 864 endogenous variables
together with a program for inputting shocks to 725 exogenous variables.

Validation tests

Having used the 135,000 data points to create the NN reduced-form approximations, we used
the remaining 15,000 out-of-sample data points to assess the accuracy of the NN reduced-
form approximations. Figures 4 and 5 compare results generated by TERM with those
generated by our NN reduced forms.

https://www.tensorflow.org/

16

TERM results

Reduced
-order NN
results

Figure 4. % effects on national GDP generated by TERM and the NN
approximation equation in 15,000 out-of-sample tests

Figure 5. % effects on employment in a major exporting region generated by
TERM and the NN approximation equation in 15,000 out-of-sample tests

Reduced
-order NN
results

TERM results

17

The 15,000 dots in each figure show TERM results for the 15,000 additional simulations on
the horizontal axis and NN results on the vertical axis. A perfect fit generates a dot on the
45-degree line.

The figures refer to just two variables, national GDP and employment in a major exporting
region. The tight fit shown in these figures applies to the wide range of the macro and
regional variables that we tested.

In conducting both the 135,000 training simulations and the additional 15,000 test
simulations, we allowed variations in the exogenous variables over the full ranges of what
was considered plausible for the destructive events under consideration. As can be seen from
Figure 4, the test simulations produced national GDP results in the range zero to -22 per cent.
For employment in the selected region, the range of TERM results shown in Figure 5 was
even greater, from slightly positive to -40 per cent. Reassuringly, the NN approximations in
both figures are accurate over the entire range of TERM results.

6. Concluding remarks

Only 10 years ago, the work described in this paper would not have been feasible for a
relatively small research organization relying mainly on personal computers. The
computational challenge and the investment of human time would have been too great. Two
factors have changed that situation and made it possible to successfully complete this project.

The first is major improvements to GEMPACK software over this period. Solution times per
integration step have been reduced by a factor of 4 or more for large models
(https://www.copsmodels.com/gpfort.htm) by using a newly developed LU algorithm.
Recently added Runge-Kutta integrators using adaptive step-size methods produce accurate
solutions using only a fraction of the number of steps previously required. These facts
combined with developments in computer hardware reduce the task of computing 150,000
CGE simulations from more than a month on multiple PC’s to 3 days on a single machine.

The second factor is the availability of fast and easy-to-use libraries for NN development
such as tensorflow (released in 2015). With these libraries, implementing a neural network as
described here is a routine task, whereas before, expert knowledge and significant
programming time would have been required.

The feasibility of NN methods dramatically increases the detail and accuracy that can be built
into mimic equations for CGE reduced forms. An NN mimic system can include a large
number of exogenous variables with wide ranges of shocks and can capture the non-
linearities of the CGE model. The NN mimic system described in this paper produces results
that closely match those from a large-scale CGE model for wide variations in 725 exogenous
variables. In scope and tested accuracy, this is well beyond any previous mimic system for a
CGE model.

References

Britz, W., J. Li and L. Shang (2021), “Combining large-scale sensitivity analysis in
computable general equilibrium models with machine learning: an example application
to policy supporting the bio-economy”, 2021 GTAP Conference paper, available at
https://www.gtap.agecon.purdue.edu/uploads/resources/download/10483.pdf .

https://www.copsmodels.com/gpfort.htm
https://www.gtap.agecon.purdue.edu/uploads/resources/download/10483.pdf

18

Dixon, P.B., M. Jerie, M.T. Rimmer and G. Wittwer (2019), “Rapid assessments of the
economic implications of terrorism events using a regional CGE model: creating GRAD-
ECAT (Generalized, Regional And Dynamic Economic Consequence Analysis Tool)”,
chapter 6, pp. 121-161, in Okuyama, Y. and A. Rose. (eds.). Advances in Spatial and
Economic Modeling of Disaster Impacts, Springer Nature, Switzerland.

Horridge, J.M., J. Madden and G Wittwer (2005), “Using a highly disaggregated multi-
regional single country model to analyze the impacts of the 2002-03 drought on
Australia”, Journal of Policy Modeling, vol 27, pp. 285-308.

Horridge J.M., Jerie M., Mustakinov D. & Schiffmann F. (2018), GEMPACK manual,
version 12.2, GEMPACK Software, ISBN 978-1-921654-34-3.

Wittwer, G. and Horridge, M. (2018), “Prefectural Representation of the Regions of China in
a Bottom-up CGE Model: SinoTERM365”, Journal of Global Economic Analysis, 3(2),
pp. 178- 213.

Rose, A., F. Prager, Z. Chen, and S. Chatterjee (2017), Economic Consequence Analysis of
Disasters: The E-CAT Software Tool, Singapore, Springer.

Wittwer, G., editor (2017), Multi-regional dynamic general equilibrium modelling of the U.S.
economy: USAGE-TERM Development and applications, Springer, Switzerland.

Wittwer, G, (2024), “The economic impacts of a hypothetical foot and mouth disease
outbreak in Australia”, Australian Journal of Agricultural and Resource Economics
68(1):23- 43, available at: https://onlinelibrary.wiley.com/doi/full/10.1111/1467-
8489.12546 .

https://onlinelibrary.wiley.com/doi/full/10.1111/1467-8489.12546
https://onlinelibrary.wiley.com/doi/full/10.1111/1467-8489.12546

	g-348 cover
	text

