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Abstract:  

Neural Network (NN) theory provides a powerful method for approximating the reduced 
form of a large-scale multi-regional CGE model.  However, NN methods are relatively 
unknown by CGE modellers.  We set out the theory of the NN approximation method and 
demonstrate how it works with simple examples.   

The paper is motivated by a project for a client with limited in-house CGE capabilities but 
requiring the ability to obtain CGE solutions at short notice in a confidential environment. 
We describe how an NN approximation meets the client’s needs.  The NN approximation is 
more accurate and broadly applicable than earlier approaches that CGE modellers have used 
based on regression equations and matrices of elasticities.   
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Neural-Network approximation of reduced forms for CGE models explained by 
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by 

Peter Dixon, Maureen Rimmer, Florian Schiffmann 

Centre of Policy Studies, Victoria University, Melbourne 

November 12, 2024 

 

1.  Introduction 

Florian Schiffmann suggested using a Neural Network (NN) approach to approximate the 
reduced form of a CGE model. He then implemented it in the application motivating this 
paper.  Peter Dixon and Maureen Rimmer, with advice from Florian, drafted the paper.  Their 
aim was to teach themselves about what Florian was doing and, perhaps in the process, help 
to demystify NN ideas in the minds of other CGE modellers.1   

Section 2 explains the role of reduced forms in transferring CGE capabilities to the clients of 
CGE modeling groups.  As an example, we introduce the destructive events tool (DET).   

Section 3 sets out the formal mathematics of the NN approach.  In section 4 we give the 
mathematics intuitive substance by working through elementary examples.  In the examples, 
we specify highly simplified reduced forms and show how these can be approximated by an 
NN search.   

Section 5 is a brief report on our experience in using NN to construct DET.  The construction 
of DET is part of a larger project.  Further information on NN will be included in a report on 
the larger project which we are preparing with other colleagues at the Centre of Policy 
Studies.   

Section 6 contains concluding remarks.  

2.  Motivation 

Computable general equilibrium (CGE) modelling offers insights on policies for the 
environment, agriculture, trade, and other areas.  However, policy-relevant CGE models are 
complex.  Successful application of CGE models requires people with considerable training 
and experience.  Organizations without CGE expertise can go to outside providers, but this is 
an unattractive option for quick-turnaround projects, especially if the results must be 
confidential.   

Rose et al. (2017) and Dixon et al. (2019) developed mimic tools that clients use to 
approximate CGE solutions relevant to their interests.  These tools were formed by 
conducting a limited number of CGE simulations.  From the simulations, they were able to fit 
regression equations or estimate elasticities that encapsulate CGE relationships between 
endogenous and exogenous variables.  These relationships became the basis of mimic tools.  
The attractive feature of these tools is that they can be applied easily in-house with negligible 

                                                 
1  The only CGE application of NN in CGE modelling of which we are aware is Britz et al. (2021) who used NN for 
sensitivity analysis.  In the Britz et al. paper, readers are assumed to know how NN works.     
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turn-around time by clients without CGE experience.  On the other hand, the number of 
exogenous variables included in these mimic tools and the range of applicable shocks is 
limited, and non-linearities present in the CGE model are generally missed.   

This paper describes an approach based on Neural Network (NN) theory for creating mimic 
tools.  This approach overcomes the limitations of the earlier regression/elasticity methods.   

To motivate the explanation of the NN approach we briefly describe a destructive events tool 
(DET).  This was built for a client who wanted to equip itself with the ability to assess at 
short notice, in a secure environment, the likely regional and national economic effects of an 
adverse event with any given destruction/death/evacuation characteristics occurring at any 
location.   

The underlying economic model for DET is a version of TERM2.  TERM is a dynamic, CGE 
modelling system.  It has been implemented for single countries disaggregated into sub-
national regions and for multi-country models with subnational regions.  In the application 
motivating this paper, TERM was formulated for a single national economy divided into 29 
sub-national regions and 23 industries.  The model can receive shocks representing capital 
destruction in each industry and sub-national region, and deaths in and evacuations from each 
sub-national region.  The output from the model includes national and sub-national economic 
variables such as GDP and output by industry.  In reduced form the model can be visualized 
as:   

( )qgdp(q) G k(r, j);D(r);E(r) for all r REG, j IND  
q  {nation, 29 regions}

= ∈ ∈

∈
  (2.1) 

( )q,ioutput(q, i) H k(r, j);D(r);E(r) for all r REG, j IND  
for q  {nation, 29 regions}, and i {23 industries}

= ∈ ∈

∈ ∈
  (2.2) 

where the exogenous variables are  
k(r,j), the percentage of the capital stock in industry j in region r that is destroyed or 

made unusable by  the adverse event; 
D(r), the number of deaths in region r; and  
E(r), the number of evacuations from region r; 

and the endogenous variables are  
gdp(q), the percentage change in GDP in region q (national and sub-national) caused by 

the adverse event; and 
output(q,i), the percentage change in the output of industry i in region q (national and 

sub-national). 

For any given values of the exogenous variables, we can obtain values for the endogenous 
variables by solving the model.  But that option is not available to our client.  What the client 
needs are functional forms for Gq and Hq,i.  Then by inserting into (2.1) and (2.2) values for 
the exogenous variables suitable for the event under consideration, the client can evaluate the 
endogenous variables. 

                                                 
2  The Enormous Regional Model.  The TERM methodology was pioneered by Horridge et al (2005).  In recent years, it has 
been developed and extended by Wittwer and other colleagues at the Centre of Policy Studies, see for example Wittwer 
(2017 and 2024) and Wittwer and Horridge (2018).   
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Thus, the challenge for us was to derive explicit functional forms for Gq and Hq,i that could be 
used by the client.    

3.  Using Neural Networks to derive explicit forms for Gq and Hq,i in (2.1) and (2.2) 

In developing explicit forms for Gq and Hq,i we ran about 150,000 TERM simulations with 
different sets of values for the exogenous variables.  This gave us a dataset with 150,000 
observations for the vectors of exogenous variables and the corresponding values for the 
endogenous variables.  Then we derived Gq and Hq,i by fitting Neural Network (NN) 
equations to 135,000 observations and used the remaining 15,000 observations for out-of-
sample testing.      

We start the explanation of how the NN method uses the data by specifying in (3.1) to (3.5) 
the mathematical form of the NN optimization problem.  In explaining the notation, we 
introduce various NN concepts: layer, input layer, output layer, hidden layer, node, weights, 
bias, edge and activation function.  Before reviewing the mathematics in detail, it is useful to 
note that: 

(a) N1 in (3.2) is the number of exogenous variables;  
(b) NJ in (3.5) is the number of endogenous variables; 
(c) Exog

rV (t)  for t = 1, …, 135,000 is the data for the rth exogenous variable, and 
Endo

kV (t)  is the data for kth endogenous variable;  
(d) JkV (t)  , for k = 1, …, NJ, is the fitted value for kth the endogenous variable when 

the exogenous variables are from observation t; and  
(e) the Fs are pre-specified functions.      

The NN problem takes the form:  

choose values for Ws to minimize  

 ( )
NJ 2Endo

k Jk
k 1 t OBS

V (t) V (t)
= ∈

−∑ ∑     (3.1) 

subject to  
Exog

1r rV (t) V (t)= ,   for all t and  r= 1, 2, …, N1 ` (3.2) 

N1

2r 2r 1 ,2r 1 b,2r
1

V (t) F W * V (t) W
=

 
= + 

 
∑

 



,  for all t and    r= 1, 2,…, N2 (3.3) 

          …   …   … 

N(J 2)

(J 1)r (J 1)r (J 2) ,(J 1)r (J 2) b,(J 1)r
1

V (t) F W * V (t) W
−

− − − − − −
=

 
= + 

 
∑

 



,  for all t and r= 1, 2,…, N(J-1) (3.4) 

and 
N(J 1)

Jk (J 1) ,Jk (J 1) b,Jk
1

V (t) W * V (t) W
−

− −
=

= +∑
 



  for all t and k = 1, , 2, …NJ (3.5) 

With given values for the Ws (often referred to as weights although they can positive or 
negative and need not sum to one), we could work through (3.2) to (3.5) to obtain VJk(t).  The 
objective is to set the Ws so that the resulting fitted values for VJk(t), k = 1, …, NJ minimize 
(3.1). 
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The constraints in the optimization problem are set out in what is referred to in NN as layers, 
each of which contains nodes.  The node values in one layer are transmitted to the next layer 
by transmission lines known as edges.   

The first layer, known as the input layer, is specified by (3.2).  This layer has a node for each 
exogenous variable.  The values at these nodes [V1r(t)] are supplied by the observations for 
the exogenous variables.  

The final layer (layer J), known as the output layer, is specified by (3.5).  This layer has a 
node for each endogenous variable.  The value at the kth node [VJk(t)] is the fitted value for 
endogenous variable k and is formed as a linear combination of the node values in the 
second-last layer (layer J-1) plus an intercept term.  The weights used in transferring the 
value in layer J-1 at node   to layer J at node k is denoted by (J 1) ,JkW − 

.  The intercept term 

(often referred to as bias) introduced in layer J at node k is denoted by b,JkW .   

If there are no layers between the input layer and the output layer, the NN problem reduces to 
ordinary least squares.   

The layers between the input and output layers are known as hidden layers.  These layers can 
have any number of nodes.  The value at a node [Vmr(t), m = 2, .., J-1 and r = 1, …Nm] in a 
hidden layer is formed by applying an activation function, the Fs in (3.3) – (3.4).  The input 
to an F function is a linear combination of node values in the previous layer plus an intercept 
term.  The weights used in transferring the value in layer m-1, node   to layer m, node r is 
denoted by (m 1) ,mrW − 

.  The intercept term in layer m at node r is denoted by b,mrW . 

Figure 1 illustrates a 3-layer NN computation in which there are two exogenous variables and 
one endogenous variable, and the second layer has two nodes.  

While (3.1) – (3.5) provides a formal definition of the process by which the reduced-form 
equations in (2.1) – (2.2) can be approximated by NN fitting, it leaves important questions 
unanswered.  How do we determine the number of hidden layers and the number of nodes in 
each of them?  What form should the activation functions take?  Finally, does the method 
give a close approximation to the Gq and Hq,i functions?   

The answer to the last question is yes, but the answers to the other questions are indefinite.  
All we can do is report our experience in section 5 and show that the method worked.  
However, we can say that the activation functions chosen in NN analyses are typically 
simple.  For example, in our application, we used the ReLU form3 in generating the node 
values in all hidden layers, that is we evaluated the nodes in the hidden layers according to:  

N(m 1)

mr (m 1) ,mr (m 1) b,mr
1

V (t) Max 0, W * V (t) W
−

− −
=

 
= + 

 
∑

 



,   

 for all t,  m= 2, …, J-1,  and r= 1, 2,…, Nm               (3.6) 

In the next section, we illustrate the surprising flexibility of (3.6) in elementary examples of 
NN computations.    

                                                 
3  This is the rectified linear unit (ReLU) function. 
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Figure 1.  An NN approximation of the value of the endogenous variable in a 3-layer computation with 2 exogenous variables and  
1 endogenous variable  
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4.  NN computations in elementary examples 

We present three examples in which there are two exogenous variables and just one 
endogenous variable.  Then we discuss the NN method for a case in which there is more than 
one endogenous variable.   

Example 1:  a linear model 

What happens if the true reduced form for our model is linear, and not knowing this, we use 
an NN computation to approximate the reduced form?  Will the hidden layers get in the way 
of finding the true linear reduced form? 

To answer this question, we assume that the endogenous variable is generated by a linear 
equation with two exogenous variables: 

Endo Exog Exog
1 2V (t) V (t) V (t)= + ,   for all t ` (4.1) 

How well can we approximate (4.1) with a 3-layer NN search in which the activation 
functions are ReLU and second layer has two nodes?  [The first layer has two nodes (number 
of exogenous variables and the third layer has 1 node (the fitted value of the single 
endogenous variable)].   

With this setup we look for W values to minimize  

 ( )2Endo
31

t OBS
V (t) V (t)

∈

−∑     (4.2) 

subject to  
Exog

1r rV (t) V (t)=   for all t and  r= 1, 2 ` (4.3) 

2

2r 1 ,2r 1 b,2r
1

V (t) Max 0, W * V (t) W
=

 
= + 

 
∑

 



  for all t and    r= 1, 2 (4.4) 

and 
2

31 2 ,31 2 b,31
1

V (t) W * V (t) W
=

= +∑
 



  for all t (4.5) 

After a little experimenting, we found that NN could exactly reproduce the linear model with 
the following weights:   

11,21 12,21W W 1= =   (weights for transmitting node values from layer 1 to 1st node in layer 2) 

11,22 12,22W W 1= = −   (weights for transmitting node values from layer 1 to 2nd node in layer 2)

b,2rW 0=  for r = 1, 2  (intercept terms for the nodes in layer 2)  

21,31W 1= , 22,31W 1= −   (weights for transmitting node values from 2 to the single node at 3) 

b,31W 0=   (intercept term for the node in layer 3)  
 (4.6) 
With these weights, the node values in layer 2 are given by  

( ) 11 12 11 12
21 11 12

V (t) V (t)  if   V (t) V (t) 0
V (t) Max 0,V (t) V (t)

0  otherwise  
+ + ≥

= + = 


  (4.7) 

and  
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( ) 11 12 11 12
22 11 12

V (t) V (t) if   V (t) V (t) 0
V (t) Max 0, V (t) V (t)

0  otherwise  
− − + <

= − − = 


   (4.8) 

At layer 3, we have  

31 21 22V V V= − .   (4.9) 

If 11 12V (t) V (t) 0+ ≥  then substituting from (4.7) and (4.8) into (4.9) gives 

   31 11 12V (t) V (t) V (t)= +  (4.10) 

If 11 12V (t) V (t) 0+ <  then substituting from (4.7) and (4.8) into (4.9) again gives 

   31 11 12V (t) V (t) V (t)= +  (4.11) 

Thus, under all circumstances, we see from (4.1) and (4.3) that  

   Exog Exog Endo
31 1 2V (t) V (t) V (t) V (t)= + =  (4.12) 

With the choice of weights in (4.6), the objective function (4.2) is optimized with value zero.  
This confirms that if the reduced form is linear then NN can exactly replicate it. 

Example 2:  a quadratic model 

In presenting this example, we simplify the notation by omitting the “t” arguments.   

We assume that the endogenous variable is generated by a quadratic equation with two 
exogenous variables: 

 ( )2Endo Exog Exog
1 2V V V= +     , (4.13) 

where Exog
1V and Exog

2V are drawn randomly and independently from rectangular distributions 

each with range [-0.5, 0.5].  The dots in Figure 2 show values of Exog
1V + Exog

2V with the 

corresponding value of EndoV for 100 observations of Exog Exog
1 2(V ,V ) . 

How well can we approximate (4.13) with a 3-layer NN computation in which the second 
layer has 4 nodes and the activation functions are ReLU?  

We won’t answer this question directly.  But we will show that such an NN computation does 
at least as well as the fit obtained by the 4-piece linear approximation indicated by 4 straight 
lines in Figure 2 and defined by: 

 
( )
( )
( )

Exog Exog Exog Exog
1 2 1 2

Exog Exog Exog Exog
1 2 1 2

Endo
Exog Exog Exog Exog

1 2 1 2

Exog Exog Exog Exog
1 2 1 2

1.5*(V V ) 0.5 if V V 0.5

0.5* V V if 0 V V 0.5
V

0.5* V V if 0 V V 0.5

1.5* V V 0.5 if 0.5 V V

 + − + ≥


+ ≤ + ≤
=
− + ≥ + ≥ −

− + − − ≥ +

  (4.14) 

We will do this by showing that the 4-piece linear approximation is delivered by the 
following weights applied to generate node values in the NN layers: 

11,21W 0.5= ; 12,21W 0.5= ; b,21W 0=      [ weights to generate value at layer 2, node 1] 

11,22W 1= ; 12,22W 1= ; b,22W 0.5= −      [ weights to generate value at layer 2, node 2] 
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11,23W 0.5= − ; 12,23W 0.5= − ; b,23W 0=      [ weights to generate value at layer 2, node 3] 

11,24W 1= − ; 12,24W 1= − ; b,24W 0.5= −      [ weights to generate value at layer 2, node 4] 

21,31W 1= ; 22,31W 1= ; 23,31W 1= ; 24,31W 1= ; b,31W 0=    [ weights at layer 3, node 1] 
 (4.15) 

Demonstration that the weights specified in (4.15) deliver (4.14)   

Working with (3.2) – (3.3) and using the weights in (4.15), we obtain node values in layer 2: 

[ ]
Exog Exog

11 12 1 2
21 11 12 Exog Exog

1 2

0.5*(V V )     if  V V 0
V Max 0,0.5*V 0.5*V

0 if  V V 0

 + + ≥= + = 
+ <

    (4.16) 

[ ]
Exog Exog

11 12 1 2
22 11 12 Exog Exog

1 2

V V 0.5       if  V V 0.5
V Max 0,V V 0.5

0 if  V V 0.5

 + − + ≥= + − = 
+ <

    (4.17) 

[ ]
Exog Exog

11 12 1 2
23 11 12 Exog Exog

1 2

0.5*(V V )       if  V V 0
V Max 0, 0.5*V 0.5*V

0 if  V V 0

− + + ≤= − − = 
+ >

    (4.18) 

[ ]
Exog Exog

11 12 1 2
24 11 12 Exog Exog

1 2

(V V ) 0.5       if  V V 0.5
V Max 0, V V 0.5

0  if  V V 0.5

− + − + ≤ −= − − − = 
+ > −

    (4.19) 

Using the layer-3 weights from (4.15) in (3.5), we obtain the fitted value, V31, for the 
endogenous variable as: 

31 21 22 23 24V V V V V= + + +     (4.20) 

Consistent with (4.14) we find that the fitted value, V31, of EndoV  is determined as follows: 

if Exog Exog
1 2  V V 0.5+ ≥ then, 

31 11 12 11 12 11 12V 0.5*(V +V ) (V +V ) 0.5 1.5*(V +V ) 0.5= + − = −     (4.21) 

if Exog Exog
1 2  0 V V 0.5≤ + ≤ then, 

31 11 12V 0.5*(V +V )=     (4.22) 

Exog Exog
1 2if 0 V V 0.5≥ + ≥ −  then, 

31 11 12V 0.5*(V +V )= −     (4.23) 

and Exog Exog
1 2if 0.5 V V− ≥ +   then, 

31 11 12 11 12 11 12V 0.5*(V +V ) (V +V ) 0.5 1.5*(V +V ) 0.5= − − − = − −     (4.24) 

Interpretation   

The forecasting R-squared for the piecewise approximation defined by (4.14) and illustrated 
in Figure 2 is 0.95.  This has been achieved without optimizing.  We can conclude that an NN 
computation with ReLU activation functions and one hidden layer containing 4 nodes would 
do even better than this.  It is also apparent that with more nodes in the hidden layer, the 
approximation function would have more pieces and give any desired level of accuracy.    
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Figure 2.  Quadratic model approximated by 4-segment piecewise linear function  

 
 

We chose the illustrative model (4.13) because it could be represented easily in a 2-
dimensional diagram.  It is clear that NN piecewise approximations could be used to handle 
more general polynomial forms.     

Example 3:  A Leontief function 

In this example, we assume that the endogenous variable is generated by 

 ( )Endo Exog Exog
1 2V Max V ,V=     , (4.25) 

A reduced form along the lines of (4.25) might arise if Exog Exog
1 2V  and V refer to production 

facilities for a key product and EndoV  is GDP.  The effect on GDP might be severe if there are 
large negative shocks to both production facilities but relatively mild if just one facility is 
destroyed, allowing users of the critical commodity to be supplied from the other facility.   

We show that (4.25) can be reproduced exactly with a 3-layer NN computation in which the 
second layer has 4 nodes and the activation functions are ReLU.  

Consider the following settings for the weights: 
11,21W 0.5= ; 12,21W 0.5= ; b,21W 0=      [ weights to generate value at layer 2, node 1] 

11,22W 0.5= − ; 12,22W 0.5= − ; b,22W 0=      [ weights to generate value at layer 2, node 2] 

11,23W 0.5= ; 12,23W 0.5= − ; b,23W 0=      [ weights to generate value at layer 2, node 3] 

11,24W 0.5= − ; 12,24W 0.5= ; b,24W 0=      [ weights to generate value at layer 2, node 4] 

21,31W 1= ; 22,31W 1= − ; 23,31W 1= ; 24,31W 1= ; b,31W 0=    [ weights at layer 3, node 1] 
 (4.26) 

0

0.25

0.5

0.75

1

-1 -0.5 0 0.5 1

EndoV

1 2
Exog ExogV V+
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Demonstration that the weights specified in (4.26) deliver (4.25)   

Working with (3.2) – (3.3) and using the weights in (4.26), we obtain node values in layer 2: 

[ ]
Exog Exog

11 12 1 2
21 11 12 Exog Exog

1 2

0.5*(V V )     if  V V 0
V Max 0,0.5*V 0.5*V

0 if  V V 0

 + + ≥= + = 
+ <

    (4.27) 

[ ]
Exog Exog

11 12 1 2
22 11 12 Exog Exog

1 2

0.5*(V V )       if  V V 0
V Max 0, 0.5*V 0.5*V

0         if  V V 0

− + + ≤= − − = 
+ >

    (4.28) 

[ ]
Exog Exog

11 12 1 2
23 11 12 Exog Exog

1 2

0.5*(V V )     if  V V 0
V Max 0,0.5*V 0.5*V

0 if  V V 0

 − − ≥= − = 
+ <

    (4.29) 

[ ]
Exog Exog

11 12 1 2
24 11 12 Exog Exog

1 2

0.5*(V V )      if  V V 0
V Max 0, 0.5*V 0.5*V

0  if  V V 0

− − − ≤= − + = 
− >

    (4.30) 

Using the layer-3 weights from (4.26) in (3.5), we obtain the fitted value, V31, for the 
endogenous variable as: 

31 21 22 23 24V V V V V= − + +     (4.31) 

From (4.27) and (4.28) we see that under all circumstances,   

 21 22 11 12V V 0.5*(V V )− = +  (4.32) 

From (4.29) and (4.30) we see that under all circumstances,   

 23 24 11 12V V 0.5* V V+ = −  (4.33) 

Then using (4.31), (4.32) and (4.33) we obtain  

 ( )31 11 12V Max V ,V=  (4.34) 

This confirms that the Leontief function can be reproduced by an NN-computation with 
ReLU activation functions.     

Example 4.  Dealing with more than one endogenous variable 

If there is more than one endogenous variable, then we could perform a separate NN 
computation for each one.  However, by solving a single NN problem encompassing multiple 
endogenous variables, as in (3.1) to (3.5), we can economize on the dimension of the NN 
optimization problem.   

To gain intuition on how this works, we combine examples 1 and 2.  We assume that there 
are two endogenous variables generated by 2 exogenous variables according to: 

 ( )2Endo Exog Exog
1 1 2V V V= +  (4.35) 

 Endo Exog Exog
2 1 2V V V= +  (4.36) 

How well can we approximate (4.35) and (4.36) with a 3-layer NN computation in which the 
second layer has 4 nodes and the activation functions are ReLU?  As in example 2, we don’t 
answer this question directly.  We specify weights and show that they generate good 
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approximations to the true reduced-form equations, thereby demonstrating that an NN 
optimization procedure would generate good approximations. 

The weights we choose to determine the values of the nodes in the second layer and the value 
of the first node in the third layer are those given in example 2 by (4.15).  The weights we 
choose to determine the value of the second node in the third are 

21,32W 2= ; 22,32W 0= ; 23,32W 2= ; 24,32W 0= ; b,32W 0=   (4.37) 

With this choice of weights, the values at the nodes in the second layer are given by (4.27) to 
(4.30), and the value at the first node of the third layer is given by (4.21) to (4.24).  
Consequently, with our chosen weights the NN approximation for Endo

1V  is the same as the 4-
piece linear approximation illustrated in Figure 2 for example 2.  What about the 
approximation for Endo

2V ?  By working through Figure 3, we can see that the NN fit for Endo
2V  

is exact.   

In this example we have lost no accuracy by combining the NN computations for the 2 
endogenous variables into a single computation.  At the same time, we have reduced the 
number of weights that need to be determined.  In two separate computations we have a total 
of 34 weights: 17 for each computation made up of 8 weights to transmit information from 
the first layer to the second layer plus 4 bias weights at the second layer plus 4 weights to 
transmit information from the second layer to the third layer plus 1 bias weight at the third 
layer.  In a combined computation there are 22 weights: 8 weights to transmit information 
from the first layer to the second layer plus 4 bias weights at the second layer plus 8 weights 
to transmit information from the second layer to the third layer plus 2 bias weights at the third 
layer.     

More generally, the determination of approximation functions for NJ endogenous variables in 
NJ separate neural network problems with N1 exogenous variables and N2 nodes in 1 hidden 
layer requires the estimation of NJ*[N1*N2+N2+N2+1] weights.  This is reduced to  
[N1*N2+N2+ N2*NJ +NJ] weights in the combined problem.  As we will see in section 5, 
this is a huge saving when there are large numbers of exogenous and endogenous variables.  
The advantages of the combined approach are accentuated in problems with more than one 
hidden layer.   

Our example in which there was no loss of accuracy in the combined problem as we go from 
one endogenous variable to two is rather a special case, facilitated by the second reduced 
form equation being linear.  Nevertheless, it illustrates a broadly applicable idea.   

If we have successfully implemented a neural network approximation of reduced forms for 
NJ endogenous variables, then it is likely that we can extend this to additional endogenous 
variables in an expanded neural network optimization problem with extra weights only in the 
last layer.  These are necessary to obtain the approximation functions for the additional 
endogenous variables.  The number of extra weights is [ ]NJ * N(J 1) 1∆ − +  where NJ∆  is the 
number of additional endogenous variables and N(J-1) is the number of nodes in the last 
hidden layer.  Linear combinations of the functions at the last hidden layer can give 
considerable flexibility in approximating the reduced forms for the additional endogenous 
variables.   This is illustrated in Figure 3 in which the functions used in approximating Endo

1V
are combined with new weights in approximating Endo

2V .    
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Figure 3. Model with 2 exogenous and 2 endogenous variables approximated by an NN 
computation with a single 4-node hidden layer  

 
 

The solid red curve is the true reduced form for Endo
1V  and the red straight line is the true reduced form for 

Endo
2V .  The 2-piece linear line aob is the V21 function defined in (4.16).  The 2-piece linear line hcb is the 

V22 function defined in (4.17).  The 2-piece linear line eod is the V23 function defined in (4.18).  The 2-piece 
linear line gfd is the V24 function defined in (4.19).  With the weights defined in (4.15) for the first node in 
the third layer, we obtain, as in example 2, the approximation for Endo

1V  given by the four linear pieces, hn, 
no, om and mg.  In determining the approximation for Endo

2V , the weights for the second node in the third 
layer defined by (4.37) eliminate the V22 and V24 functions.  At the same time, they tilt the ao and the eo 
pieces of the V21 and V23 functions so that they become coincident with the Endo

2V  line in the north-east and 
south-west quadrants.  
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5.  Using NN to develop the Destructive Events Tool (DET) 

This section provides a brief description of our experience in constructing DET to 
approximate the reduced form for the model described by (2.1) – (2.2).   

As mentioned earlier, we created a database for DET by conducting 150,000 TERM 
simulations.  The values for the 725 exogenous variables (capital destruction in 23 industries 
and 29 regions, and deaths and evacuations in 29 regions) were chosen via a process 
involving random choice of location and other characteristics of the event.  We recorded 
results for 864 endogenous variables.  These included GDP and employment by region, and 
output by industry and region.   

Each TERM simulation took about 20 seconds on our 32 core Ryzen machine.  The 
simulations were conducted with GEMPACK version 12.2.  We used the Runge-Kutta 
Dormand Prince method with adaptive step size and an epsTolerance value of 0.1 (see 
Horridge et al., 2018, GEMPACK Manual v. 12.2).  Conducting the 150,000 simulations 
took about 3 days using 16 parallel jobs on a 32 core machine.  

From the simulations, we extracted 135,000 data points, with each data point consisting of 
values for 725 exogenous variables and 864 endogenous variables.  Using these data, we 
constructed (“trained”) an NN containing an input layer with 725 nodes (one for each 
exogenous variable) and an output layer with 864 nodes (one for each endogenous variable).  
Between the input and output layers we inserted 4 hidden layers each containing 725 nodes. 
The activation functions were ReLU.  The loss function used in optimizing the network was 
mean squared error.   

The total number of weights in the resulting network was 2,732,664  
[=4*(725*725 +725)+725*864+864)].  The large number of hidden layers was required to 
appropriately represent the non-linearities in the CGE model and allow for accurate 
prediction of the effects of both small-scale and large-scale shocks.  The optimization was 
done using the Adam optimizer as implemented in a tensorflow package (see 
https://www.tensorflow.org/).  We chose to terminate after 1000 optimisation steps, by which 
time the value of the loss function for the training data did not change anymore.  The 
optimization of the neural network took approximately 1 hour on a standard desktop machine. 

Using a single NN calculation rather than separate calculations for each endogenous variable 
sharply reduced the number of weights for which we had to find optimal values.  If we had 
attempted to solve 864 separate NN problem with 4-hidden layers each having 725 nodes, 
then the total number of weights would have been close to 2 billion [={4*(725*725 
+725)+725+1)}*864].   

We supplied the client with the NN approximation functions for 864 endogenous variables 
together with a program for inputting shocks to 725 exogenous variables.   

Validation tests   

Having used the 135,000 data points to create the NN reduced-form approximations, we used 
the remaining 15,000 out-of-sample data points to assess the accuracy of the NN reduced-
form approximations.  Figures 4 and 5 compare results generated by TERM with those 
generated by our NN reduced forms.   

https://www.tensorflow.org/
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Figure 4.  % effects on national GDP generated by TERM and the NN 
approximation equation in 15,000 out-of-sample tests

Figure 5.  % effects on employment in a major exporting region generated by 
TERM and the NN approximation equation in 15,000 out-of-sample tests
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The 15,000 dots in each figure show TERM results for the 15,000 additional simulations on 
the horizontal axis and NN results on the vertical axis.  A perfect fit generates a dot on the 
45-degree line.   

The figures refer to just two variables, national GDP and employment in a major exporting 
region.  The tight fit shown in these figures applies to the wide range of the macro and 
regional variables that we tested.    

In conducting both the 135,000 training simulations and the additional 15,000 test 
simulations, we allowed variations in the exogenous variables over the full ranges of what 
was considered plausible for the destructive events under consideration.  As can be seen from 
Figure 4, the test simulations produced national GDP results in the range zero to -22 per cent.  
For employment in the selected region, the range of TERM results shown in Figure 5 was 
even greater, from slightly positive to -40 per cent.  Reassuringly, the NN approximations in 
both figures are accurate over the entire range of TERM results.   

6.  Concluding remarks 

Only 10 years ago, the work described in this paper would not have been feasible for a 
relatively small research organization relying mainly on personal computers.  The 
computational challenge and the investment of human time would have been too great.  Two 
factors have changed that situation and made it possible to successfully complete this project.   

The first is major improvements to GEMPACK software over this period.  Solution times per 
integration step have been reduced by a factor of 4 or more for large models 
(https://www.copsmodels.com/gpfort.htm ) by using a newly developed LU algorithm.  
Recently added Runge-Kutta integrators using adaptive step-size methods produce accurate 
solutions using only a fraction of the number of steps previously required.  These facts 
combined with developments in computer hardware reduce the task of computing 150,000 
CGE simulations from more than a month on multiple PC’s to 3 days on a single machine. 

The second factor is the availability of fast and easy-to-use libraries for NN development 
such as tensorflow (released in 2015). With these libraries, implementing a neural network as 
described here is a routine task, whereas before, expert knowledge and significant 
programming time would have been required.  

The feasibility of NN methods dramatically increases the detail and accuracy that can be built 
into mimic equations for CGE reduced forms.  An NN mimic system can include a large 
number of exogenous variables with wide ranges of shocks and can capture the non-
linearities of the CGE model.  The NN mimic system described in this paper produces results 
that closely match those from a large-scale CGE model for wide variations in 725 exogenous 
variables.  In scope and tested accuracy, this is well beyond any previous mimic system for a 
CGE model.    
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