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Preface

This paper is intended to be a practical guide to
intertemporal modelling, with particular emphasis on how
intertemporal optimization can be incorporated into computable
general equilibrium models. It focuses on the practical details of
building intertemporal models: how to set up and solve
intertemporal optimization problems, how to analyze such models
in partial equilibrium, and how to link them to computable general
equilibrium models. For the most part, nuances of theory have
been relegated to footnotes, but plenty of references have been
provided to enable an interested reader to pursue the subject in

more depth. A reading guide for further study appears at the end.

To make the paper as useful as possible, a number of
exercises, complete with answers, have been included. These
present supplementary material or go into particular topics in more
depth. They can be used in the ordinary way to practise techniques
discussed in the text, or they can be used as rather lengthy
footnotes on certain topics. In any event, they form an important
part of the paper and should not be neglected. Overall, with this
structure and emphasis, we hope the paper will be a useful
introduction to the rapidly expanding field of intertemporal general

equilibrium modelling.






Intertemporal Optimization in General Equilibrium:
A Practical Introduction®

Peter J. Wilcoxen

1. Introduction

Most applied economic models are designed to represent
economies at particular points in time. For long run models the
‘ point of interest is far in the future, when all immobilities have
vanished and all transient behaviour has died out. On the other
hand, the only period of interest in short run models is the
immediate present. In both cases, however, only one period is
captured by the model, so they are both essentially static. No
information is included on how the economy changes over time, so
it is impossible to solve for the sequence of equilibria between the

short and long run solutions.

In contrast, intertemporal models specifically include
equations describing how the economy evolves. These allow the
models to be used to find the economy's trajectory through time.
Unfortunately, this versatility comes at a price: intertemporal
models are somewhat harder to build--and much harder to solve--
than static models. However, there are two circumstances in
which the extra effort is worthwhile. The first arises when the
trajectory itself is of interest apart from the short and long run
equilibria. Policy makers, for example, are often keenly interested
in how fast the economy moves toward the long run, and whether

or not the transition is smooth. This is especially true when the

This paper is a preliminary version of Chapter 5 of Dixon, Parmenter, Powell
and Wilcoxen {forthcoming). It has been rewritten slightly to make it more
self-contained.



short and long run effects of the policy are very different.
Furthermore, some models, especially those in which lags play a
prominent role, show cycles in certain variables between the short
and long run. If so, it is often important to know the timing and
amplitude of the oscillations. A final occasion in which the trajec-
tory might be of interest occurs when the model is to be used to
evaluate the effect of different policies on the rate of growth. Thus,
in a number of circumstances it is necessary to be able to compute
the path of the economy over an extended period of time, and in
these cases it would be worthwhile to build an intertemporal

model.

The other reason for building an intertemporal model is to
incorporate intertemporal optimization by agents. If some of the
agents in the model choose current variables to optimize
intertemporal objective functions, even short run results will
require some form of intertemporal modelling. For example,
households might be modelled as lifecycle savers whose
consumption is based in part on their human wealth. Since human
wealth is the discounted sum of expected future labour earnings,
any shock that changes expected wage rates or hours worked in the
future will change human wealth and hence change current
consumption. Since the lifecycle model is used more and more
often as the basis of savings behaviour, it has stimulated the

development of intertemporal modelling.

Perhaps the strongest motivation for developing
intertemporal models, however, has been the desire to integrate
recent theories of investment behaviour into applied general

equilibrium work. In such investment models, each firm chooses



its level of investment to maximize the stock market value of its
equity. Market value, in turn, depends on the earnings a firm is
expected to generate in the future. Thus, changes in expectations
about a firm's prospects can change its market value and hence its
level of investment. To a large extent, this is nothing more than a
formalization of the common sense principle that firms whose
prospects look good will invest more than others. Investment is
prima facie an intertemporal decision, so treating it as such in

general equilibrium models is very appealing.

In the remainder of this paper we present a small general
equilibrium model incorporating investment behaviour derived
from value maximization.! We begin by setting up and solving a
simple investment problem. Next, we analyze the investment
model thoroughly in partial equilibrium to gain insight into how it
works, and to demonstrate some powerful analytical techniques
that can be used with intertemporal models of all types. After that,
we link the investment problem to a small, static general
equilibrium model to produce an intertemporal general equilibrium
model. Finally, we will use the resulting model to analyze a number

of different policies.
2. A Simple Intertemporal Model of Investment

We begin building our intertemporal model of investment by
making two assumptions: first, that each firm chooses its level of

investment to maximize its stock market value, and second that an

1 The investment model incorporates adjustment costs in the spirit of Eisner
and Strotz (1963), Lucas (1967), Gould (1968} and Treadway (1969). In this
formulation, investment will depend on the marginal value of Tobin's q (see
Tobin (1969) for a discussion of g).



arbitrage equation governs the relationship between returns on
debt and returns on equities. The first assumption establishes the
basis for the firm's investment behaviour. There are many other
ways in which a firm might choose its level of investment, but this
is the only one which is likely to be optimal for its shareholders.
The second assumption is needed to define how the firm's market
value is determined by asset holders. Together, the two

assumptions will allow us to construct the firm's objective function.

The next step in setting up the model is to choose a
particular arbitrage equation and use it to find an expression for the
market value of a firm. In this paper, we will use the arbitrage

equation below:

ritvit) = D)+ ; (2.1}

where V(i) is the value of the firm at time t, r{t) is the rate of
interest on bonds at t, D(t) is the dividend paid by the firm, and
V’(t) is the derivative of the firm's value with respect to time.?2 The
left side of the equation gives the return that could be earned by
holding V dollars of bonds. The right side is the return received by
holding all of the firm's equity and is equal to dividends plus capital
gains. Arbitrage will occur as long as the returns on the two assets

differ, so in equilibrium, equation (2.1) must hold.

Many extensions and modifications to equation (2.1) are
possible. If equity is thought to be riskier than debt, a risk
premium could easily be added. If dividends, capital gains and

interest income are taxed differently, those taxes could also be

2 In this paper we will denote time derivatives using the prime symbol ('} rather
than the usual dot.



included in the equation. We have used expression (2.1) to keep
our exposition as clear as possible, but it could easily be modified

without changing the substance of our analysis.

Expression (2.1) is a differential equation in the value of the
firm. It can be solved by collecting terms in V on the left, finding
an appropriate integrating factor, and integrating both sides.

Collecting terms produces the following equation:
Vt) - r(OViY) = -Dit) . (2.2)
When r is constant, an appropriate integrating factor for (2.2) is:3

eTt | {2.3)

Multiplying both sides of (2.2) by (2.3) produces the following:

(V') - ©V(t) JeTt = -Dit)eTt . (2.4)

From inspection, it is clear that the left side of (2.4) is the
differential of the product of V and the integrating factor, so (2.4)

can be rewritten as:

d(ViteTt)

dt = -D(tjeTt . (2.5)

Equation (2.5) shows how the value of the firm must change
over time if the arbitrage equation is to hold. At this point, the
expectations of investors become important. If investors have
information allowing them to form expectations about the future
path of dividends, and they believe the arbitrage condition will

always hold, then (2.5) can be integrated to give the value of the

3 When r is not constant the integrating factor becomes a bit more complicated;
for this model it would be exp(J' rividv). However, none of the subsequent
results would change significantly.



firm.4 To see this, suppose investors at time 1T have an information
set Q_ that leads them to expect the path of dividends at all future
times t2t to be given by a function D(t;Q;). That is, D(t;Q,) is the
dividend expected for time t given information set Q.. Similarly,
let V(t:Q.) be the expected value of the firm at t given information
Q.. Then, integrating both sides of (2.5) from 1 to an arbitrary
future time T (and rearranging slightly) gives the expression below:

T
V(GQ,) = V(T e T + [ D(t:Q)e ™9 dt . (2.6)
T

Equation (2.6) has a clear and intuitive interpretation. If we
let 1 be the present, "today", then the left term, Vi{r;Q,}, is the value
of the firm today, given today's information. Moving to the right,
V(T:Q,) is the expected value of the firm at time T given
information available today, so the first term on the righthand side
is the present value today of owning the firm at T. Finally, the
rightmost term is the present value of the dividends expected to be
paid between 1t and T. Thus, equation (2.6) shows that the value of
the firm today is equal to the present value of owning it at T plus

the present value of the dividends it will pay between t and T.

If we knew what investors today thought about the value of
the firm at some particular time T in the future, and what
dividends they expected the firm to pay between now and then, we
could use (2.6) to compute the value of the firm today.
Unfortunately, for most points in the future, we do not know a

priori what investors expect the firm's value to be, so we do not

4 These expectations need not be correct, but they must exist; investors must
have some belief about the dividends the firm will pay in the future.



have an appropriate value of V(T;Q,). One solution, however, is to
let T go to infinity. Then, by making a plausible assumption about
the rate of growth of V far in the future, the middle term in (2.6)

can be evaluated.

To see how this works, observe that when T goes to infinity

the middle term in (2.6) becomes the following:

lim V(T;Q )e™(T0 (2.7)

T
As long as V(T;Q,) remains bounded as T—, expression (2.7) will
be zero. Thus, if V remains finite for all time, the middle term in
(2.6) can be dropped from the equation. In fact, (2.7) will be zero
under the more general condition that as T goes to infinity, the rate
of growth of V is strictly less than the interest rate. That is, (2.7)
will be zero as long as the following holds:5

lim VI(T:Q)

. 2.
S VT, <r (2.8)

Thus, if we are willing to assume that (2.8} holds, we can solve (2.6)
for the value of the firm at time 1:

o

V() = [ Dt e dt . (2.9)
T

This says that the value of the firm today is the present value of the
dividend stream it is expected to pay in the future, given today's in-

formation.

Expression (2.8) is formally known as a "transversality

5 In fact, the following analysis can also be applied, with slight modifications,
when (2.8} holds with equality.



condition” because it is a requirement imposed on the limit of V as
time goes to infinity. It is an assumption made in order to obtain
equation (2.9), and is not an implication of the model because there

is nothing in the problem we have specified so far that requires

{2.8) to hold. However, it has a sensible economic interpretation,
and is not a particularly unreasonable assumption. In essence,
expression (2.8) rules out Ponzi schemes that go on forever.® To
see why, notice that if (2.8) is violated, the arbitrage condition can
only hold if the firm pays negative dividends. Otherwise, (if
di?idends were zero or positive) the return on equity would be
higher than the return on debt, so no one would be willing to hold
bonds. This would force the interest rate up until {2.8) held. The
only time (2.8) can be violated and still have the arbitrage equation
hold is if investors are willing to pay money into a firm forever
without receiving any dividends. Thus, assuming that (2.8) holds is

nothing more than ruling out infinitely-lived Ponzi schemes.

In the remainder of the paper, the values of all variables in
future periods will always be expectations based on an information
set Q.. To keep our notation as simple as possible, we will often
suppress Q_ from variable names and write, for example, vit;Q2,) as
V(t). It is important to remember, however, that all variables at
future times are expectations implicitly derived from a particular

information set.

8 Ponzi schemes take their name from Charles Ponzi, who perpetrated a famous
chain letter swindle in the 1920's. A chain letter promises that if you send one
dollar to the person at the top of some list, delete that name, add your name to
the bottom of the list, and pass the letter on to 10 more people, you will become
rich. The scheme works only as long as there are new people to be pulled in at
the bottom of the pyramid.



At this point we have derived the cbjective function in the
firm's investment problem: equation (2.9) gives the firm's value in
terms of its expected future dividends. Furthermore, (2.9) has a
clear, intuitive interpretation: the value of the firm at time t is the
discounted present value of its dividend stream. This
interpretation is so compelling that it is often tempting to begin
building investment models by assuming that (2.9) holds and
dispensing its derivation from arbitrage. Starting with the arbitrage
equation, however, provides a rigorous basis for {2.9). More
importantly, had the original arbitrage equation been more
elaborate, (2.9) would have been somewhat different, but the

process used to derive it would have been exactly the same.

The next step in setting up the investment problem is to
specify how dividends depend on the firm's choice variables. At
this point we make another assumption: that all investment comes
out of retained earnings. This assumption is fairly innocuous
because introducing other means of finance such as corporate
bonds or new share issues alters the problem relatively little. In
fact, the financial decision makes no difference at all if capital
markets are perfect.? However, it is straightforward to incorporate

finance into the model, if necessary.

If all investment is financed internally, dividends are equal to
the difference between the firm's revenue and the total of its
variable costs, its investment costs, and any taxes it pays. In a

fundamental sense, this is simply a matter of accounting. To put

7 This is a consequence of the Modigliani-Miller theorem, first described in
Modigliani and Miller (1958). Blanchard and Fischer (1989) provides a clear
discussion of this point in chapter 6.

10



this mathematically, if K is a vector of capital stocks, L is a vector of
variable inputs, I is a vector of investments in the capital stocks, P
is a vector of prices and wages, and T is a vector of taxes, dividends

are given by some function D(X,L,I,P,T).

To get much further, we need to specify the actual form of D.
For the purposes of this section, we will assume there is a single
tax which falls on dividends, T9, and that function D is additively
separable into a short run profit function and an investment cost
function.® The short run profit function gives the profit on a
particular vector of capital stocks after variable inputs are chosen
optimally. Since this corresponds closely to the accounting idea of
earnings, we will represent it by function E( ), and will often refer
to it as earnings. Using C to represent the investment cost

function, dividends can be written as shown below:

DK.LI,P.T) = ( E(K,P)-C(.P) J(1-T9 . (2.10)

At this point we can now set up and solve the firm's
investment problem under fairly general conditions. Inserting
{2.10) into (2.9) gives us the firm's objective functicn. In addition,
the firm is subject to an accumulation constraint which specifies
how the capital stock evolves as a consequence of the firm's
investment. Here we will make the usual assumption that the time
derivative of the capital stock is given by the difference between
gross investment and depreciation. Thus, the firm's investment

problem at time 1 is to choose a path of investment, I{t} for t21, that

8 Formally, we have assumed that the short run variable input decision is
separable from the long run decision on investment, and also that the capital
stock does not enter the investment cost [unclion. Both of these are
controversial in the literature, and neither is really necessary to the model.
However, they do keep the exposition much clearer.

11



solves:®

o0

Max [ ( E(K,P)-C(LP) )(1-Tde ™D dt ,
T

subject to K'=I-8K . (2.11)

Problem (2.11) requires dynamic optimization and can be
solved using the method of optimal control.19 The first step is to
form the Hamiltonian for the problem, which in this case is the

expression below:

H = (E-C)(1-T9e -1 4 A(I-5K) . (2.12)

Necessary conditions for optimality of a particular path of
investment are the following:11

dH

—é—I—=O s {(2.13)
JH ,

é—R":-A s (2.14)
oH

—=K’ . 2.1
oA K (2.15)

Differentiating (2.12) as required by (2.13) through (2.15} produces

the first order conditions for the problem:

- %CI—(I-’I‘d)e'r““) +A=0, - (2.18)

9 In writing the problem this way we have implicitly assumed that any
constraint on the sign of investment would not be binding. Moreover, we have
also ignored certain boundary conditions (such as the initial capital stock)
which constrain the firm. We will discuss the boundary conditions in detail
later in this section.

10 A very lucid treatment of applied optimal control and other methods of
dynamic optimization is Kamien and Schwartz {1981).

11 Refer to Kamien and Schwartz or another textbook on dynamic optimization
for a proof of these.

12



- g%ufd)e-r(t-ﬂ +8A =A", (2.17)
1-3K=K . (2.18)

Unlike static problems, under dynamic optimization the multiplier
is a function of time. In this case, A(t) can be interpreted as the
change in the value of the firm today (at time 1} due to a marginal
increase in the capital stock at time t in the future. For
convenience, we can introduce a new function, Af{t), which is

defined as shown:

Alt) = Aft)eTlt-T) {(2.19)

The interpretation of A is straightforward: it is the value at time t of
having an additional unit of capital at that time, based on
information held at time t. To distinguish between it and A, A is
often called the "current value” multiplier. Substituting (2.19} into
(2.16) and (2.17) and rearranging produces expressions below:
9C | 1d
=57(1-T9 {2.20)
JE
o _ Sy ad
A = (r+3)A 3r1 4y . {2.21)

Equations (2.20), (2.21) and (2.18) are very general: they are the
first order conditions for any problem in which the dividend
function has the separability properties discussed above. To solve a
particular problem, we will need to insert specific functions for E
and C. However, a number of conclusions can be drawn from the

general structure above.

Since investment costs are a convex function of I, we know

from the implicit function theorem that there must be an inverse

13



function F such that:

[ =FQ,T14P) . (2.22)

Thus, (2.20) determines the level of investment as an implicit
function of A: if A were known, I could be calculated from (2.22).12
In contrast, equation (2.21) is a first order differential equation in A
which does not depend on I. This allows it to be solved using the
method of integrating factors described above for the arbitrage
equation.!3 In this case, the resulting expression is:

o

Alt) = f 1-Td)e-(r+dlls-tlgs (2.23)
t

=¥

Equation {2.23} shows how the market value of the firm
changes in response to marginal changes in its capital stock.
Moreover, it has an interesting and useful interpretation. The right
side of (2.28) is the present value at time t of the additional future
post-tax earnings that would be generated by an extra unit of capital
received at time t. Thus, (2.23) determines the stock market value
of an extra unit of capital, while (2.22) selects the optimal level of

investment given that market valuation.

The next step in building a practical investment model is to
derive the earnings and investment cost functions for a firm with a
particular technology. Suppose the firm's output is produced

according to a constant returns to scale Cobb-Douglas function of

12 ynder conditions derived in Hayashi (1982), A can be linked to stock market
data (this will be discussed in detail in exercise E6). Choosing a particular
functional form for C( ) thus allows the adjustment cost model to be tested
econometrically using only the first of the necessary conditions. One such
example is Summers (1981).

13 No loss of generality is implied by this. Were it not independent of
investment, equation {2.22) could be used to eliminate I by substitution.

14



labour and capital:

q = LEKIE | (2.24)

In the short run, the capital stock is fixed and the firm chooses
labour to maximize the difference between its revenue and its
variable costs. That is, it solves the following problem:

Max pg-wL .,

subject to q=LEK!E . (2.25)

The earnings function E can be found by inserting the optimal
labour input found from {2.25) into the maximand. The result is

the expression below:

EK.P) = (-9 (%E—’)” Tk (2.26)
€

For convenience, we can define a function B which captures the

price and wage effects, so (2.26) can be rewritten as:

EK,P) = B(PK . (2.27)

The function B{P) gives the short run return on a unit of capital, so

it can be thought of as the rental price of the capital stock.

Turning now to the investment cost function, we adopt the
adjustment cost formulation and require that C and its first two
derivatives all be positive. This means that investment is costly,
that it becomes more expensive as more of it is done, and that its
marginal cost increases as I rises. To derive a particular
investment cost function, we can start with an assumption about

how new capital goods are produced.

Suppose that new capital goods have to be installed (in some

15



sense) before they can be used in production. Machines, for
example, have to be installed in factories before they can be used.
Each firm might produce its own installed capital good by buying
raw capital goods and hiring special workers to install it. If raw
capital goods and installation services have to be combined in fixed
proportions, the production function for installed capital goods
would have the following form:

I = min{X,,S} ; (2.28)

where X, is the quantity of raw capital goods, and S is a measure of
installation services chosen to have the same units as X;. Next,

suppose that S is produced from labour as follows:

Liy/2
s,(’;] : (2.29)

where L! is the labour hired for installation. Thus, the total cost of
investment is the expenditure on raw capital goods plus the cost of
labour for installation. If the firm chooses X; and L! to minimize
the cost of attaining any particular level of I, the investment cost

function shown below is obtained:

C(LP) = P, I+6wI? . (2.30)

By inspection, (2.30) has the properties we required -of an
investment cost function: it is positive, increasing and convex. As
long as 6 is greater than zero, there will be costs of adjustment in

investment since the marginal cost increases as I rises.

Next, the earnings function in (2.27) and the adjustment cost
function in (2.30) can be inserted into the general first order

conditions derived above--(2.20), (2.21) and (2.18)--to produce the

16



necessary conditions for this particular problem:

A = (P+2weD(1-T9) | (2.31)
A = (+8-B(P)(1-TY) . (2.32)
K =1-8K . (2.33)

As suggested above, (2.31) can be solved for the optimal level of in-

vestment given a particular value of A:

1A
. 2.34
L= ({7 - Py (2.34)

Equation (2.34) can be used to eliminate I from (2.33), producing a

final pair of differential equations in » and K:

A o= @A - BP)(1-TY) (2.35)
. A Py
K = w1 8K - Pl {2.36)

Equations {2.35) and (2.36) fully characterize the solution to
the firm's investment problem. Solving them simultaneously would
produce paths of A and K that were consistent with the first order
conditions for the problem laid out in (2.31) through (2.33).
Unfortunately, it is impossible to solve them analytically for
arbitrary time paths of wages, prices and taxes. Instead, they must
usually be solved numerically. Later in this paper we will describe
several numerical methods suitable for problems like this. First,
however, we will demonstrate a number of techniques that can be
used to provide a lot of intuition about the model's behaviour

without actually éolving for the optimal path of investment.

17



3. Graphical Analysis

Ideally we would like to solve differential equations (2.35) and
(2.36) for the time paths of A and K, insert the resulting A into
(2.34), and solve for the path of investment over time. However,
some of the terms in the equations, such as tax rates, can be
arbitrary functions of time. That means that (2.35) and (2.36) must
be solved explicitly for each policy to be modelled. For most
policies, it will be difficult or impossible to solve the equations
analytically, so numerical methods must be used to obtain explicit
results for investment. On the other hand, (2.34) through (2.38) do
contain all relevant economic information about the solution, albeit
implicitly. This makes it possible to explore many properties of the
model without actually solving for the explicit path of investment.
In the remainder of this section, we demonstrate how such an
analysis might proceed. The methods we use are routine analytical
tools in the study of differential equations and can be found in

textbooks such as Birkhoff and Rota {1978}.
3.1. The Steady State

The difficult integration required to solve (2.35) and (2.36)
becomes easy when the model reaches the steady state. In the
steady state, the time derivatives of A and K are zero, so (2.35) and
(2.36) simplify to a pair of simultaneous equations in A and K.

Solving them gives the expressions below for steady state A and K:

_rd
ASS = B(P) (_——-Ir; ) , (3.1)
1 (BR)
Ko = 2w08 [r+5 Pk) ) (3.2)
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From these, steady state investment can be found by inserting {3.1)

into (3.2). As might be expected, it is exactly equal to depreciation.

Equations {3.1) and (3.2} can be used to examine the effects
of different shocks on the model's steady state. This can be accom-
plished most easily by total differentiation of both expressions with

respect to prices and taxes:

op 1’1‘ B(P)
dASS = 55 ( 6) dp - oy ard | (3.3)
ss__ 1 9B
dx = SweoeD) (5p dP - - eade . (3.4)

From (3.3) and (3.4) it is easy to see what happens when one of the
model's exogenous variables changes. For example, if the dividend
tax, T4, were to rise, steady state A would fall, while the capital
stock would be unchanged. Capital is unaffected because T9 is a
pure profits tax in the long run, falling only on profits and not
affecting any decisions at the margin. In contrast, if the price of
capital, Py, were to rise, the steady state capital stock would fall
without any change in A. This, too, is an intuitive result: if the price
of capital increases with no accompanying rise in the returns to
owning capital (A), the capital stock should fall. Finally, changes in
the prices and wages embodied in vector P affect A and K in the
same way. For example, from (2.26) an increase in the firm's
output price would increase B, so A and K would both rise. On the
other hand, a rise in the wage rate would lower 8, so A and K would

both fall.

This sort of analysis can be applied to a wide variety of

models, not just those that have an explicit steady state. In fact, it
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can be used with any model that can be transformed to have a
steady state. For example, if the original model did not have a
steady state because of exogenous population growth, it could be
transformed onto a per capita basis. The result would then have a
steady state. Models which do not themselves have steady states
but which can be transformed to have them are often said to attain
balanced growth in the long run. Thus, steady state analysis can be
applied both to models with steady states, and to models with long-
run balanced growth. Moreover, this is likely to encompass all
models with interesting long run behaviour, since any model which
does not asymptotically attain balanced growth will eventually
exhibit very peculiar features (such as negative budget shares in

consumption).
3.2. Constructing a Phase Diagram

Knowing how the steady state responds to changes in the
exogenous variables is helpful, but it does not provide any
information about the model's dynamic behaviour. For that, another
tool can be used: the Poincare phase plane.!4 A phése plane, or
phase diagram, is a two dimensional graph of a model's dynamic
behaviour that is constructed in the following way. Two of the
model's variables are chosen to be axes. Usually these will be the
two variables of most dynamic interest; in the investment model
above, they would be A and K. Then, for each point in the resulting
plane, the time derivatives of the two variables are evaluated. Again

using the investment model as an example, this would be ¥’ and K.

14 phase planes are described in more detail in textbooks on differential
equations such as Birkholl and Rota (1978). They can be constructed for any
system that is stationary, or "autonomous”, in which the variables do not
explicilly depend on time.
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Together, these derivatives define a vector which indicates the
direction the system would move if it ever happened to reach that
point. Thus, by using the finished phase plane, it would be possible
to trace out the complete trajectory of the model given initial values
of the dynamic vari’ables.15 It would be a tedious, but
straightforward, process: start at the given point, evaluate the
derivatives, take a small step in the indicated direction, and repeat.
As a practical matter, computing the derivatives of the dynamic
variables at all points in the plane is unnecessary. Indeed, most of
the details of the model's dynamics can be found by computing a

few carefully chosen loci, as we will show.

The first step in constructing a useful phase diagram is to
solve for the model's steady state, and to plot that on the plane.}6
At the steady state, the derivatives of both variables are zero, so if
the system ever gets there, it will stay there. Next, find the locus
of points where the derivative of the first dynamic variable is zero.
This will include at least the steady state. Then, find the locus of
points where the derivative of the other variable is zero. Again, this
should include the steady state. These loci divide the plane up into
several regions. In each region, the derivatives of the dynamic
variables will have a particular sign, so if the system ever enters
that region, it will unambiguously evolve in a particular direction.
From this it is possible to conclude a great deal about qualitative

aspects of the model's dynamics. To illustrate how a phase plane

15 strictly speaking, a single phase plane can only represent two dynarmic
variables, but the argument carries through for models with many dynamic
variables if several phase planes were to be used.

18 If the model does not have a steady state, the phase plane will be of limited use,
so we will assume a steady state exists.
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can be used, we will now construct one for the investment model.

The variables of most dynamic interest in the investment
model are A and K, so we will use those as the axes. From equations
(3.1) and (3.2) we know the model has a unique steady state,
(1SS, K®%), which is plotted in figure 3.1 and marked A.17 Next, we
solve for the locus of all points for which the time derivative of A is
zero. This is accomplished by totally differentiating (2.35) with
respect to & and K, and setting dA’ to zero. This produces an
equation showing wﬁat change must be made in A in order to keep

A" zero when K changes:

0 = (r+8)da . (3.5)

Thus, for A’ to be zero, dA must be zero, so A must always remain at
its steady state value. This means that the A'=0 locus is a horizontal
line through the steady state in figure 3.1.18 Next, we apply the
same procedure to equation (2.36) to obtain a locus of points where
K’ is zero. This produces the following:

1

Ozmdk-&ﬂ{ . (3.6)

Forming the ratio dA/dK shows that:

dr  2we(1-T9)
k=" § (3.7)
This indicates that if K increases slightly, A must also rise in order

for K to remain zero. Put another way, the dA/dK locus must be

17 Multiple steady states can be accommodated, but most models will have only
one.

18 The absence of the capital stock from equation {3.5) is a particular property of

this model and will not be true in general. Exercise ES, for example, discusses
a model which does not have this property.
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Figure 3.1:

Constructing a Phase Diagram: Step One

K'=0

I I

A'=0
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upward sloping. Since it includes the steady state, it must look

roughly like K'=0 locus in figure 3.1.

These loci allow the model's dynamic behaviour to be inferred
without solving for the system's direction of motion at every point
in the plane. To see why, we can consider the two loci in turn. By
construction, the A'=0 locus contains all points in the plane where
A’ is zero. Points not on the locus, therefore, have nonzero
derivatives. Since both equations in the system are continuous in A
and K, regions of positive and negative derivatives must be
separated by the A’=0 locus. Thus, the derivative of A must have the
same sign in regions I and II, and must be nonzero. Similarly, A’ in
regions Il and IV must be nonzero, and of the opposite sign to that
of regions I and II. Inserting an arbitrary value of A greater than ASS
into equation (2.35) reveals that X’ is positive when A is above its
steady state value. In the same way it can be shown that A’ is
negative for values of L below the steady state. These facts can be
summarized on the phase diagram by small arrows pointing up in

regions I and II, and down in regions Il and IV.

The same technique can be applied to the K'=0 locus. Points
to the right of K'=0, in regions I and IV, must have the same sign
for K’. Inserting an arbitrary value of K above its steady state into
{2.36) shows that K’ must be negative in those regions. Similarly, it
can be shown that the derivative of K must be positive in regions II
and III. This information can be included in the phase diagram by
small arrows pointing to the right in regions Il and III and to the

left in regions I and IV. The results are shown in figure 3.2.
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Figure 3.2: Constructing a Phase Diagram: Step Two

A'=0
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The phase diagram is now almost complete and can be used
to reveal a great deal about the dynamic behaviour of the model. For
example, suppose the economy is initially somewhere in region II
We know from the analysis above, as summarized by the arrows
drawn in region II, that the system will move upward and to the
right as long as it is in that region. In economic terms, this means
that A and K will both grow indefinitely, so the model will move
farther and farther away from the steady state as long as it remains
in region II. The only event that could possibly change the
trajectory would be for the system to pass into one of the other
regions, but it can be shown that never happens.l® Thus, if the
economy were ever to enter region II it would move upward and to
the right forever. Similar reasoning shows that if the model
entered region IV, it would move down and to the left forever.
Regions I and III are a little more difficult because it turns out that
the model does leave those sectors eventually, but in both cases it is
possible to show that the model will move farther and farther away

from the steady state as time goes on.

The final step in constructing the phase diagram is to identify
any dynamic paths that lead to the steady state. So far, the situation
does not look too promising: the path cannot run through any of the

regions I through IV because we have established that once the

19 The model cannot move from region I into either region Il or region IV
because in region II the derivative of A is strictly positive. Thus, the system
can only move upward. On the other hand, the derivative of K is positive in
region 1l, so the model could move to the right toward quadrant I. As it did so,
however, the derivative of K would become closer and closer to zero, so the
rightward motion would slow down. Finally, at the K'=0 locus, the model
would not be moving to the right at all, and the upward motion of increasing A
pushes it back into region II. Thus, from region I the model can approach
region I, but it will never enter it.
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model enters those regions it will never return to the steady state.
However, two possible paths remain: the A'=0 locus and the K'=0
locus. Of these, the K'=0 locus can be ruled out because A tends to
move even farther away from its steady state value at each point
along the locus. On the other hand, the economy could move along
the A’=0 locus and would eventually converge to the steady state.
Thus, only a single path leads to the steady state and it lies along
the 4’=0 locus. This is illustrated on figure 3.3 by a heavy line with

several arrows.

A trajectory leading to the steady state is usually called a
"stable path” since by proceeding along it, the model eventually
attains the steady state. The stable path plays a crucial role in the
dynamic behaviour of the economy. As will be discussed in section
(3.3}, in most models it will be unique. Thus, it associates a single
value of A with each value of the capital stock. Moreover, if the
economy starts at some point on the stable path, as time passes it
will remain on the path and move closer to the steady state. At the
same time, if the economy starts somewhere off the stable path, it
never attains the steady state. Together, these properties mean
that if the system is to aftain the steady state from an arbitrary
initial capital stock, there will be a unique value of A associated with
that stock. That is, the marginal value of an additional unit of
capital is unique at any particular capital stock. The essence of
dynamic modelling is to determine the stable path, and hence A,

correctly.

At this point, the phase diagram is complete. It shows the
dynamic behaviour of the system at any point (A,K), given the

model's parameters and the expected values of the exogenous
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Figure 3.3: The Finished Phase Diagram
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variables. The next step will be to use the phase diagram to
determine what happens when new information arrives that causes
investors to change their expectétions of future variables. Such
information might be a government announcement about future tax
rates, a new discovery by the firm that will lower its costs, a change
in the regulatory structure, or any number of other events. Before
analyzing any shocks, however, we will briefly digress to discuss a

very important property of models: uniqueness of the stable path.
3.3. Saddle Path Stability and Uniqueness

At least near the steady state, most interesting economic
models possess a characteristic, known as "saddle path stability",
which guarantees uniqueness of the stable path. Uniqueness turns
out to be essential in many models because it allows the
transversality condition discussed in section (2) to be used to tie
down the value of the firm at some point in the future. If there
were many paths leading to the steady state, the transversality
condition alone would not be enough to determine the value of the

firm at an earlier point in time.

To understand the role of the transversality condition more
deeply, and to see why it is important that the stable path be
unique, it is useful to think about exactly what the equations of
motion tell us. As a group, they describe how the model would
evolve from any particular point in the (A,K) plane, given an
underlying information set Q.. Thus, if we knew where the system
was at a particular moment, and no news had occurred to change
Q,, the equations of motion would tell us where the model was

going next. However, at the instant that new information arrives,
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investors may change their expectations about the firm's prospects.
If they do, A will change discontinuously from its value under the
old information set, say A(1:Q,) to a figure appropriate given the
new information, say MT:QQ). As a practical matter, this behaviour
is very familiar since it occurs in the stock market every day. When
a company unexpectedly announces an innovative new product, for
example, the marginal value of its capital stock jumps upward. The
path of A up to the instant that news arrives provides essentially no
guidance about what A will be just after a shock. Moreover. the size
of the jump cannot be determined from the equations of motion
alone; an additional piece of information is needed. Formally, one

of the problem's boundary conditions is missing.

Boundary conditions are certain facts known about the
solution path. Their role is really to determine the constants of
integration introduced in solving (integrating) the model's
equations of motion. If the model consists of two differential
equations, for example, two constants of integration will appear,
and two boundary conditions will be needed. Some of these can be
derived from fairly obvious facts. In particular, since state variables,
such as capital stocks, do not change discontinuously, their values
should not change at the instant of the shock. This allows the
initial post-shock values of state variables to be determined from
data on their values just before the shock. Thus, the initial values of

state variables provide some of the needed boundary conditions.

Unfortunately, the initial values of the state variables alone do
not provide enough information. In the investment model, for
instance, two boundary conditions are needed, but there is only one

state variable. Since costate variables, such as A, can change
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discontinuously when news arrives, their values before the shock
provide no information about the condition of the model just after
the shock. In technical terms, the initial condition for A is
unknown, so we must look for another fact to use for the second

boundary condition.

One possibility is to impose something on the long run
behaviour of the model. We may not know the initial value of A, but
we might be willing to assume that in the long run, A should
eventually approach its steady state value. Technically, this is
another transversality condition like the one used at the beginning
of section (2). (In fact, it is actually the same condition slightly
disguised.} If the stable path is unique, transversality conditions
can be used to provide the missing boundary conditions. On the
other hand, they cannot do that when there are several stable paths
leading to the steady state because steady state properties alone
cannot determine which of the stable paths the model will take.
Thus, uniqueness of the stable path is a very important property of
a model. It allows information about the steady state to be used to
determine some of the model's integration constants. This means
that there will be a unique post-shock value for each costate
variable, so it is possible to determine exactly what dynamic path

the model will follow after a shock.

Saddle path stability, which guarantees uniqueness of the
stable path, is a property of the model's equations of motion. To see
whether or not a particular model possesses it, the characteristic
roots of the equations of motion must be computed. For a system of
linear differential equations this can be done in the following way.

Suppose x is a vector of variables whose time derivatives are given
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by x’. Then the system of differential equations relating the

variables may be written:

xX=Ax+Db ; (3.8)

where b is a vector of forcing terms. Near the steady state both A

and b will be constant.

The roots of the characteristic equation corresponding to
(3.8) are the eigenvalues of matrix A.20 To see what this means
intuitively, consider solving (3.8) when b is zero. In the terminology
of differential equations, this is known as the homogeneous form of

(3.8), and is shown below:

x = Ax . (3.9}

If all of the eigenvalues of A are distinct and nonzero, then any
vector x can be written as a linear combination of the eigenvectors
of A. Thus, if I is a matrix whose columns are the eigenvectors, the

following must be true:

x=Tc ; (3.10)

where ¢ is a vector of coefficients. Since I' is constant near the
steady state, differentiating (3.10} with respect to time gives the

following:

x =Tc . (3.11)

Substituting (3.10) and (3.11) into {3.9) gives:

'’ = Al'c . (3.12}

However, since I' is composed of the eigenvectors of A, it must be

20 For a review of the properties of eigenvalues, or of linear algebra in general,
see Strang (1980).
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the case that:

Al =TA ; (3.13)

where A is a diagonal matrix of eigenvalues. Inserting (3.13) into
{3.12) and multiplying through by the inverse of I" produces the

following:

¢ =Ac . (3.14)

Thus, the original differential equation can be transformed
into {3.14), which is much easier to solve. Since A is diagonal,
(3.14) is nothing more than a collection of unrelated differential
equations, each of which can be solved by the method of integrating

factors. Thus, the solution to (3.14) will be:

c=ehly; (3.15)

where v is a vector of integration constants.2! From (3.10), this

means that x has the solution:

x = ety | (3.18)

The complete solution to the original equation (3.8) is the sum of
(3.16), which solves the homogeneous equation, and a particular
solution to (3.8}, such as the steady state. Thus, the final equation

for x is the following:

x =efty 4+ x55 | (3.17)

Equation (3.17) allows us to infer a great deal about the
behaviour of the solution from the matrix of eigenvalues alone. For

example, if some of the eigenvalues {which may be complex) had

21 In case this notation is unfamiliar, a scalar raised to a matrix power is a
matrix whose elements are the scalar raised to the power of each element of
the original matrix.
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positive real parts, then the only way the model could ever attain
the steady state would be if the corresponding elements in y were
zero. A system whose eigenvalues were all positive, therefore,
could only reach the steady state if it started out there initially.

This is sometimes called an unstable system.

On the other hand, if the eigenvalues all had negative real
parts, the solution would converge to the steady state from any
starting vector. This occurs because the first term on the left in
(3.17) will always approach zero as time tends to infinity. Such a

model is said to be globally stable.

Finally, for models which have an equal number of roots with
positive and negative real parts there will be exactly one path
leading to the steady state; such systems of equations are said to be
saddle-path stable.22 Thus, computing the eigenvalues of A (which
are the roots of the characteristic equation) will reveal whether or
not a model has the saddle path property. A similar analysis can be
applied to nonlinear models by linearizing them about the steady
state. Models for which the eigenvalues are not distinct, or are
zero, can also be treated with a little more effort. Computing the
eigenvalues also provides another benefit: it reveals how fast the
system will move toward the steady state after a shock. The model

will converge toward it at a rate given by the negative elements of A.
3.4. Analyzing an Experiment

Once the phase diagram is complete it can be used to analyze

22 Economic models will always have an even number of roots (when the roots
are distinct) because for each state variable, there will be a corresponding
costate variable. It is not necessarily true, however, that half of the roots will
be positive and hall negative.
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the effects of changes in the exogenous variables. As we will show,
the phase diagram is a very powerful tool: it provides a complete
qualitative description of the effects of a shock. The only thing it
does not provide, of course, is a set of numerical results for the
variables. Sometimes numerical results are necessary, so we will
discuss numerical analysis in section {4). Keep in mind, however,
that all of the qualitative features of the solution will be revealed by

the phase diagram.

Before going into the details of analyzing experiments it is
useful to consider what sorts of shocks can be studied with an
intertemporal model. In a static model a shock consists of a single
change in an exogenous variable. A tax rate, for example, might
rise. In intertemporal modelling, however, the entire path of the
tax rate over time matters. This makes it convenient to group
experiments into four categories depending on: (1) whether the
shock is permanent or temporary, and (2) whether the change is
announced in advance or implemented immediately. One of the
most interesting features of intertemporal modelling is that a given
shock can have substantially different effects depending on how it
is enacted over time. A temporary tax increase, for example, can
produce effects that are completely different from the permanent

version of the same policy.

These distinctions between policies mean that each shock
has {at least implicitly) three dates associated with it: its
announcement, its implementation, and its repeal. The
announcement date is the time at which the public first becomes
aware of the policy. It is often quite a bit earlier than the date of

implementation, which is the time at which the policy (and the
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relevant exogenous variable) actually changes. Temporary policies
also have a repeal date, at which the shock ceases and the

exogenous variables return to their original values.

All four categories of experiment can be analyzed using phase
diagrams. A natural place to start is with immediate, permanent
changes in policy. The first step in using the phase plane is to
determine how the shock affects the zero-derivative loci. Most
shocks will shift one or both of the loci, resulting in a new steady
state. The second step is to find the new stable path. Usually this
will be straightforward once the new loci have been found. At this
point, the post-shock phase diagram is complete. It governs the
motion of the system when all of the exogenous variables have their
post-shock values. Thus, the overall diagram consists of two
superimposed phase planes: one which applies when the exogenous
variables have their initial values, and one which applies after the

shock.

The remaining step is to trace out the motion of the system
over time. At the instant the policy is implemented, which in this
case is immediately, the state variables (K in the example above)} are
fixed and cannot change. This means that if the economy is ever to
get to the new steady state, the costate variables must immediately
jump to the new stable path. Once on the stable path, the economy
evolves over time toward the steady state. In the phase diagram
this will appear as a vertical jump in the costate variable, followed

by gradual movement along the new stable path.

To make this discussion more concrete we will now show

how an immediate, permanent increase in the dividend tax in the
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model of section (3) could be analyzed. First, consider what
happens to the A’ locus. For convenience, equation (2.35) is

repeated below:

A = ([+8)A - B(P)(1-TY) . (2.35)

As T4 rises, the rightmost term in equation (2.35) becomes closer
and closer to zero. For A’ to remain zero, therefore, A must fall.
Thus, the A’=0 locus must shift downward. The new location of the
locus can be found by solving for the new steady state value of . To
find the effect of the tax increase on the K'=0 locus, we begin with

equation (2.36). repeated below:

K = A 5K - —K (2.36)
T 2we(1-T9) 2wo ’

The increase in T¢ causes the leftmost term on the right hand side
to rise. For K’ to remain zero at constant A, K must rise. Thus, the
K’=0 locus shifts to the right. The result of shifting both loci is

shown in figure 3.4.

The location of the new steady state can be found by setting A’
and K’ equal to zero and solving for A and K in equations (2.35) and
(2.36), using the new values of the exogenous variables. In this
model, the dividend tax has a particularly interesting effect: it does
not change the steady state value of the capital stock. This can be
verified by solving for ASS, inserting it into equation (2.36), and
solving for KSS. The dividend tax cancels out, so it has no effect on

the steady state capital stock. After a moment's thought the
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Figure 3.4: Shifting the Loci
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intuition behind this result is clear: Td is a pure profits tax which
does not affect any margins. An increase in the tax lowers the post-
tax dividends that firms can pay, so A falls, but it does not affect the

optimal level of investment, so the capital stock is unchanged.

For this policy it is easy to trace out the motion of the system
over time. When the tax rises, A jumps down to the new stable
path. However, the capital stock is already at its steady state level,
s0 the jump in A brings the model instantly to the new steady state.
Thus, the only change in the system is an immediate drop in A; the
capital stock and investment are completely unaffected. This path

is shown in figure 3.5 by a grey line.

Interestingly, the results are quite different when the shock
is anticipated. Suppose that instead of implementing the tax
increase immediately, the government announces that it will occur
after three years. The initial and final steady states are exactly the
same as in the previous case, so the basic phase diagram is the
same as figure 3.4. The path of the model over time, however, is
more complicated because the policy change does not occur

immediately.

When the policy is announced, A falls part of the way toward
its new steady state value, but not as far as it would if the policy
took effect immediately. It stays higher initially because the
dividend tax stays at its old value for three years, so dividends paid
during that time will not be taxed any more heavily than they were
before. However, A does drop below its original value because the

firm will eventually pay lower dividends.
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Figure 3.5: Finding the Dynamic Path
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After the initial drop in A, the system evolves according to the
equations of motion associated with the original steady state. These
equations apply because they depehd only on current tax rates and
none of the taxes have actually changed yet. Thus, the systemmoves
down and to the left. It continues to move in that direction until
the tax change occurs in year three. At that time, the model
becomes governed by the new equations of motion. These have the
same form as the original equations, but differ in that they are
evaluated at the new value of T¢. Since the model is required to
attain the steady state eventually, it must be on the new stable path
when the tax is implemented in year three. After year three, the
system evolves along the stable path toward the new steady state.

The path of the model is shown in figure 3.6.

Notice that figure 3.6 shows no jump in X at the instant when
the tax is implemented. Instead, A evolves smoothly and reaches
the new stable path precisely at the moment of implementation
without jumping. This reflects an important feature of
intertemporal models with perfect foresight: there are no windfall
gains or losses from the implementation of anticipated policies.
There can be windfalls associated with the announcement of a
policy--in this example, A falls at the announcement--but there are

no windfalls from events that have been anticipated.

This point can be understood intuitively by thinking about
what happens to A near implementation. Recall from equation
(2.23) that A is the present value of the after tax earnings of a
marginal unit of capital. Once the tax has actually increased, all

subsequent earnings are evaluated at the new rate. Shortly before
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Figure 3.6: Analyzing an Anticipated Event
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implementation, however, the value of an extra unit of capital is
what it will earn after implementation plus a small amount more
obtained before the tax kchange. As time becomes closer and closer
to implementation, the extra amount of earnings becomes smaller
and smaller, so A approaches its post implementation value

smoothly.

It is straightforward to demonstrate this point
mathematically. Let the time of implementation be 1 and the value
of A at that point be AM{tr). Now consider the value of A at an instant
A before implementation. Equation (2.23) can be written:

T
Az-A) = g%(l;Td)e-(”?’Ns—f'A) ds + Ar)er+dA (3.18)

T-A
As A approaches zero, A{t-A) approaches i{t). Thus, A must be
continuous at implementation and cannot jump. Notice that this
argument does not depend on features of the model such as the
form of the earnings or investment cost function. It is a very

general property of perfect foresight models.

Figure 3.6 shows something very striking: the capital stock
falls during the period between announcement and implementation
of the policy. This occurs because firms respond to the policy by
paying higher dividends before implementation while the dividend
tax is low. Higher dividends limit investment and drive down the
capital stock. Once the tax is in place, however, investment
returns to normal and dividends drop. Since the capital stock was
driven down, restoring the normal level of investment causes the

amount of capital to rise. This, in turn, causes the value of the firm
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to increase and allows investors to receive part of their return as
capital gains.?3 Since the capital gains tax is unchanged (and zero),
investors benefit from shifting part of their return from heavily

taxed dividends to lightly taxed capital gains.

The difference between implementing the dividend tax
increase immediately and announcing the change in advance
highlights one of the most interesting aspects of intertemporal
modelling. There is no way that the adverse effect of the
announced policy on the capital stock could have been discovered
using a static model. This kind of unexpected result arises
frequently in the analysis of announced policies, and also in the
study of temporary policies. Since it is rare for shocks to the
economy to come as a complete surprise, explicit modelling and
analysis of announcement effects is essential to understanding the
impact of government policy and the consequences of other kinds

of shocks.

We hope this discussion has demonstrated the value of phase
plane analysis in the study of intertemporal models. All qualitative
features of the model's response to any shock can be obtained using
the phase plane. The only details it does not provide are the
coordinates of particular points in the plane. We might want to
know, for example, exactly how far X initially drops in figure 3.6, or
exactly how much the capital stock has fallen by implementation of
the tax increase. To obtain these values it is necessary to find an

explicit solution to the model using numerical methods.

23 Refer to the arbitrage condition shown in equation (2.1).
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4. Numerical Methods

To solve the model numerically, we must obtain explicit
numerical paths for the dynamic variables (A and K) throughout
time. Once these are known, the paths of other variables can be
found easily by applying equations from the model. For example, in
section (2} investment can be calculated from A using equation
(2.34). This means that finding a numerical solution to the model
boils down to solving the model's equations of motion. These are a
set of simultaneous differential equations, so solving them requires

some form of numerical integration.

If the initial values of A and K were known, it would be easy to
integrate (2.35) and (2.36). Differential equations for which all
boundary conditions are known at the initial point in time are
called initial value problems, and there are many methods available
to solve them.24 A simple, intuitive approach is Euler's method,
which works in the following way.25 Let the first instant after the
shock be called time 0. If A and K were known to take values 1,
and K, at t=0, those values could be used in (2.35) and {2.36) to
calculate A’(0) and K’(0). Multiplying the derivatives by a tiny
increment of time, say At, would show approximately how much 2
and K changed over that interval. Adding these changes to A, and
K, would give approximate values for A and K at time At. These
could then be used in (2.35) and {2.36) to obtain A’(At) and K'(At).
By applying this process repeatedly, the entire future path of 4 and

24 There is an enormous range of methods available for solving initial value
problems. For more information consult Press, et al. (1986).

25 Although it is intuitively appealing, Euler's method is not usually satisfactory
in practice. For a complete discussion, refer to Press, et al. {1986).
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K could be calculated. Moreover, the solution could be made

arbitrarily accurate by making the step size At sufficiently small.

Unfortunately, the initial post-shock values of any costate
variables in the model (such as A above) will usually be unknown.26
This leaves the model without enough boundary conditions to
determine the solution uniquely. To understand this intuitively,
recall the phase diagram in figure 3.6. If A{0) is not known, there
is no way to determine where the system will be immediately after
the shock, except that it will be somewhere in the vertical line of
points above K(0). Since different points above K(0) lead to
drastically different paths of the economy over time, the solution is

not completely determined.

Fortunately, this indeterminacy can be eliminated for models
having the saddle path property discussed in section (3.3). Any
absent initial conditions can be replaced by conditions on the long
run behaviour of the costate variables. Typically, this is
accomplished by imposing transversality conditions which require
the costate variables to approach their steady state values as time
tends to infinity. These replace the missing initial conditions and
allow the solution to be uniquely determined. This produces a
system, however, in which some of the boundary conditions hold at
the initial time, and some at the steady state. When the boundary
conditions are scattered among several points in time, the system
is formally described as a "two-point boundary value problem”, and

it cannot be solved using techniques for inital value problems.

26 By this we mean that the costate variables may jump initially, taking on new
values which cannot be determined without solving the entire model.
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In fact, two-point boundary value problems are much harder
to solve than their initial value counterparts, and require special
numerical methods. The next few sections describe some of these
methods and how they perform for economic models. To keep the
discussion concise and fairly concrete, we will focus on models that
have a single costate variable, such as the model in section (2).
However, all of the methods can be extended without difficulty to

handle multiple costate variables.
4.1. Shooting

One intuitive way to solve a two-point boundary value problem
would be to guess the missing initial condition, integrate the
system forward as though it were an inital value problem, and
check whether the transversality condition was satisfied. If it was
not, the guessed condition could be revised and the entire process
repeated. Eventually an initial condition would be found which led
to the steady state when the system was integrated forward. This
approach has been used extensively in engineering and the physical

sciences, and is known as "shooting".2?

In practice, shooting is usually implemented in the following
way. Let the missing initial condition be denoted Ay. For each
guess of A, the model is integrated forward using Euler's method
to a large but finite time T. This generates a value for A(T) which
we will refer to as an “achieved” value and denote X?r. Next, the
transversality condition is tested by comparing 7»% with its steady

state value ASS. For convenience, we can define a function M which

27 Shooting is described in Press, et al. (1986), Roberts and Shipman (1972}, and
in most textbooks on numerical analysis.
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measures how close the solution is to the steady state:

M(rg) = ATlhg) - ASS . 4.1)

Since the achieved value of A at T depends on the guess of Ay, both
L?‘ and M are written as functions of Ao When a guess of A, has
been found for which M less than a specified tolerance, a solution

has been obtained.

Defining M as in (4.1) makes it clear that the object of
shooting is to choose a value of Ao that sets M to zero. This
suggests using Newton's method to update the guess at each
iteration. At iteration k+1, a first-order Taylor series expansion of

k
M about the previous guess ?\g for a trial solution kOH gives:

AM(A5) »
+

bl aelag . (4.2)

Mg = MO + —

1 k+1
Assuming that 7\(1){* is indeed a solution, M(kolr ) can be set to zero.

This allows the equation to be rearranged as shown:

k+1 k ‘ M(kg)
A = -, (43)
0 =t aMos/a

Thus, by evaluating both M and its first derivative at '/\.g, a revised

guess of A can be constructed.

Unfortunately, in economic applications shooting suffers from
severe numerical instability and can rarely be used. Small errors
made in the initial guess of the missing costate variable lead to

intertemporal paths that move far from the steady state after only a
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few years. The model of section (2) provides a typical example of
why this problem occurs. Recall equation (2.35), one of the

model's equations of motion:

A = (r+8)A - BP)(1-TY) . (2.35)

If the true post-shock value of A is inserted on the right side of the
equation, the true value of A'(0) can be calculated and the system
integrated forward toward the steady state. On the other hand,
consider what happens if the guess of Ay is too high. Evaluating
{2.35) would give a value of A’ that was also above its true value.
Thus, if A starts out toc high, it will grow too fast as well. As it
grows, A’ increases, so A moves farther and farther away from the

stable path.

In fact, for the model of section {2) the error in A grows
exponentially over time at rate r+3. Thus, if the initial guess of X is
too high by A, after T years the error will have grown to Aelr+8IT,
which will be a gigantic number. For example, if the interest were
5 per cent and depreciation rate 10 per cent, after 100 years the
error in A would exceed Ax1010, A similar problem arises if the
initial guess of A is too small. This means that a small error in the
initial guess of A will set the model on a dynamic path that leads far
from the steady state. In the terminology introduced above, M will
be huge for even very small errors in Ay. This sensitivity makes
shooting very vulnerable to the rounding errors introduced by
computer programs and prevents it from being useful for most

economic models.
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4.2. Multiple Shooting

Multiple shooting is a refinement of simple shooting that
helps control models with explosive tendencies.28 The full period
over which the model is to be solved is divided into a number of
subintervals and the model is then shot over each. Shooting over
shorter periods keeps the model from drifting too far from the
stable path in any one interval. This limits the numerical damage
done by rounding errors, so multiple shooting can be used with
economic models. However, using more intervals means that
rather than searching for a single missing initial condition, the
algorithm must find a vector of such conditions spread out across

time.

As an example of how multiple shooting is used, consider
solving the investment model over two adjoining intervals: [0,1] and
[t.T]. The first step is to guess what values A will take at 0 and 1.
Like simple shooting, multiple shooting is an iterative procedure,
so let the guesses at iteration k be denoted by xé‘ and kf . The next
step is to integrate the model forward from O to 1 starting at the
known initial capital stock, K, and the guess 7\(1){ This produces a
pair of achieved values of K(1) and A{t) which we will denote by Kf
and K?. Using Kf and ?L,lf as initial conditions, the model is then
integrated forward from t to T. From this, an achieved value of A at

T will be obtained.

The key feature of multiple shooting is that the integration

28 Muitiple shooting was introduced to economics by Lipton, et al (1982}, but has
a long history of use in other disciplines. It is described clearly and in detail
in Roberts and Shipman (1972).
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over {1, T] starts from the guess Xk. and not from 12, the achieved
value from the first integration. Starting from the achieved value of
% would be exactly the same as integrating the model over [0,T1.
which is ordinary shooting. When the guess of kg is incorrect,
however, A will have drifted very far from its true value by time 1.
This makes kf a terrible estimate of what A should actually be at 1,
so replacing it with a guessed value--even a bad guess--vastly

reduces the error in the second integration.

To see this intuitively, recall the example of error
propagation described in section (4.1): after T years, an initial error
A had compounded to a miss distance of Ae™*®T. Dividing the
period [0,T] into two subintervals of equal length reduces the
problem enormously. An error A in the guess of A, only grows to
4er+3T/2 1y the end of the first interval, which is the square root of
its previous value. Of course this reduction comes at a cost: a guess
for A is also required at the beginning of the second interval.
Assuming that another error of the order of A is made in the
second guess, A will miss its steady state value by Ae%*9T/2, Thus,
dividing the interval into two equal parts reduces the total miss
distance M to roughly 2M!/2. When M is large, this will be an
enormous improvement. Moreover, the number of subintervals is
not limited to two. Using more subintervals reduces the error
propagation problem even further, so any explosive tendencies of

the model can be completely controlled.

Since the costate variable has to be guessed at the beginning
of each interval, the revision rule used to generate new guesses at
each iteration is slightly more complicated than the one used for

simple shooting. In the case of two subintervals, the guess of A for
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the beginning of the second interval, A.. would be revised until the

following equation became zero:

My(hghg) = A30A,) - ASS (4.4)

As with ordinary shooting, M, is a miss distance. The subscript 2
has been added to indicate that it is the miss distance for the
second interval. Just as in shooting, M, and A,? both depend on A,
the guess of A at the beginning of the interval. However, they now
also dépend on an earlier X, Ay. This occurs because A affects K,

the starting capital stock for the second interval.

A second rule is needed to guide revision of Lg. Since the
model will not necessarily have reached the steady state by 1, an
expression such as (4.4) would be inappropriate. Instead, Ao is
revised until the expression below becomes zero:

a
T

Mg =4y -4, . (4.5)
That is, Ay is varied until a value is found that can be integrated
forward to attain the starting guess of A for the next interval. As a
result, when the correct value of A, has been found (so that (4.4) is
satisfied), a A that satisfies (4.5) must be the true initial value of
the model; if it were inserted into the model's equations of motion,
the system could be integrated forward to time T and the

transversality condition would be satisfied.

Thus, dividing the original period into two subintervals means
that two variables (Ag and A;) must now be chosen to satisfy two
equations (M;=0 and M,=0). This suggests using the multivariate

version of Newton's method to compute an updated vector of
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guesses at each step of the algorithm:

Ak+l =k o g IMk) (4.6)

where J is the Jacobian matrix of partial derivatives of M evaluated
at Ak, Equation (4.6) can be used with any number of shooting
intervals, and with multiple costate variables, so multiple shooting

is a fairly robust and versatile algorithm.

Unfortunately, it also consumes a great deal of computer time.
Moreover, like all algorithms based on Newton's method, multiple
shooting is not guaranteed to converge. Worse yet, it is particularly
unsuitable for intertemporal general equilibrium models because it
requires solving the intraperiod part of the model thousands of
times in the course of finding a full intertemporal solution.?? A
single intraperiod equilibrium solution requires solving a static
short run general equilibrium model, which for even moderate
sized models will require a noticeable amount of computer time.
Having to compute hundreds or thousands of these solutions makes

multiple shooting of very limited use for general equilibrium work.
4.3. The Fair-Taylor Method

A third method for solving two-point boundary value

problems, and one which is often used for intertemporal general

29  Thousands of intratemporal solutions are needed because each iteration of the
algorithm requires solving every period in the time interval several times. If
the model is to be solved over [0,100], for example, 101 intraperiod solutions
are required just to integrate the path forward from O to T once. Much worse,
however, is that the Jacobian matrix will usually have to be computed
numerically. That requires perturbing each of the elements of A and
computing an entire solution path from 0 to T. If, for example, there are five
shooting intervals, the entire path of 101 intratemporal solutions would have
to be computed six times in order to evaluate M and J. Since over 600
intraperiod solutions would have to be found for a single iteration of the
intertemporal algorithm, the method is not useful for more than very small
models.
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equilibrium models, is known as the Fair-Taylor algorithm after its
originators.3%0 It is much easier to use than multiple shooting,
controls explosive tendencies in the solution equally well, and

requires somewhat less computer time.

The algorithm itself is very simple. First, a guess is made of
the entire path of the unknown costate variable. That is, instead of
guessing a single A as in shooting, or a handful of A's as in multiple
shooting, values of A are guessed for each point in the set {0,1,...,T}.
For convenience, let the guess at iteration k be denoted by the
vector AK. If T is chosen to be year 100, AX will usually have 101
elements (the extra one is for year zero).3! The final element is
always chosen to satisfy the transversality condition. Using A¥ and
the equation of motion of the capital stock, the model is integrated
forward from the initial point to the terminal time. During this
process, the costate variable's equation of motion is temporarily
ignored. The result is a vector of the capital stocks, KX for iteration
k, that is consistent with AK, It is the path the economy would
follow if A actually had the sequence of values in AX. However, it is
not necessarily a solution to the model because A, does not
necessarily satisfy A's equation of motion. This means the algorithm
must iterate over vectors A until one is found that satisfies both

equations of motion.

Revising the guess vector between iterations is accomplished

30 The Fair-Taylor algorithm was originally proposed by Fair (1979), and later
extended by Fair and Taylor {1983). This section describes Fair and Taylor's
“type1I" iteration. They also proposed a "type III" procedure which can be used
when the terminal condition cannot be computed easily.

31 Simulating periods one year apart is not necessary for the Fair-Taylor
algorithm to work. However, it is the most common approach.
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by using the equation of motion for A in a special way. The
technique can best be explained by example, so consider a slightly
more general version of the model introduced in section (2).
There will be one state variable (K}, one costate variable (), a
vector of exogenous variables {Z), and two equations of motion, one
in K’ and one in A’. The equation of motion for A will have the

following form:

V= f0GKLZ) (4.7)

where f{ } is a function that depends on the structure of the model.
Equation (2.35), for example, is a special case of (4.7) in which a
particular functional form has been imposed for f{ }. The derivative
of A at time t can be approximated by the difference between two

consecutive values of A:32

/R W Y (4.8)

Inserting this into (4.7) produces the equation below:

Moy - M = (AL KLZY) (4.9)

This expression must hold at all points along the true path of A.
Rearranging it slightly and dropping the implied error terms

produces the following:

A = My - (K Z) (4.10)

Equation (4.10) must also hold at all points along the solution
path so it suggests a revision rule for guesses of L. By inserting

values of A;_;. A; and K from iteration k into the right side of {4.10},

32 There are a number of ways to approximate the derivative of a function at a
point, but this formulation s particularly convenient for this algorithm. For
further details, refer to exercise E7.
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an implied value of A; could be calculated. To use the terminology
introduced in section {4), an achieved value X? could be computed

as shown:

k_k
AL = Ay - IAKSZ) (4.11)

At the solution, ?»? will be exactly equal to ké{ because the solution
vector must satisfy A's equation of motion by definition. Away from
the solution, however, 7\.? will not be the same as kt(. The Fair-
Taylor algorithm uses 7&? to update the guess of A; in the following
way:

M=ol + and (4.12)

where « is a parameter used to help ensure that the algorithm con-
verges smoothly. Its takes on values in the interval [0,1] and is typi-

cally around one half.33

Thus, for a simple investment model the algorithm would be
applied in the following way. Given a guess of the path of A, the
first step would be to compute the corresponding path of K by
integrating forward from the initial point. Next, using the guess of
A and the resulting path of K, construct a sequence of achieved
values A2, Finally, create a new guess by taking a convex
combination of the old guess and the achieved values. The solution

has been obtained when the guess and achieved values differ by less

33 Choosing « carefully is fairly important to the success of the algorithm. It is
not a good idea to make « too close to one because that puts undﬁe emphasis on
A¢. which is not necessarily closer to th; true solution than A, .. That is;Ei the
true value of &, may lie between A and A;, but be much closer to X thanl . In
that case, a=1 would tend to make the algorithm diverge.
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than a given tolerance.

On the surface, this technique seems to differ quite a bit from
multiple shooting. At a deeper lével, however, the algorithms are
very similar. Multiple shooting proceeds by guessing A at a handful
of points, integrating forward, and employing a fairly sophisticated
updating rule. Fair-Taylor works by guessing A at a vast number of
points, integrating forward, and using a very simple updating rule.
In a sense, the Fair-Taylor algorithm is a version of multiple
shooting in which there are T shooting intervals--one for each year
of the solution. It can, however, be somewhat faster than multiple
shooting because it does not require computing the Jacobian matrix
of the miss distances at each iteration. In practice, this means that
Fair-Taylor will require more iterations to converge than multiple

shooting, but each iteration will be much faster to compute.
4.4. Finite Differences

A fourth approach to solving two-point boundary value
problems is the finite difference method. It differs from the three
previous algorithms because it does not operate by guessing the
missing costate variable and integrating forward to see if the
transversality condition is satisfied. Instead, a system of
overlapping difference equations is constructed which
approximates the model's equations of motion. This system is then
solved simultaneously to give the paths of the model's dynamic
variables. The initial and terminal conditions will both be satisfied
exactly, and the algorithm is completely immune to the numerical
instability that plagues shooting methods. In addition, since finite

differences is not iterative, it will always find a solution if one
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exists.34 It will never fail to converge.

The first step in using finite differences is to replace all of
the derivatives in the model by finite difference formulae. These
formulae are local approximations to derivatives, and are
constructed in a straightforward way from Taylor series expansions.
For example, one approximation for a first derivative might be
constructed as follows. First, expand the function of interest about

a particular time t for an adjacent time t+h:

flt+h) = ft) + f()h + O(h?) ; (4.13}

where O(h?) represents the Taylor series terms of order h? and
above. Rearranging {4.13) and dropping the higher-order terms
shows that:

Flt) ~ E(f—tf—‘ﬁ)—ﬂg . (4.14)

The term on the right is a finite difference approximation to the
derivative of f( ) evaluated at time t. Since it was constructed using
current and future values of f( }, it is technically known as a forward
difference. Dividing through by h reduced the terms that were
dropped to O(h), so the approximation itself will be accurate to that
order.3%5 This means that if {4.14) were used to replace a
derivative, the resulting equation would be accurate only when h
was fairly small. Thus, it is inappropriate to use a single difference
equation to approximate the original model over a long period of

time.

34 Strictly speaking, it is not iterative in the sense that multiple shooting
iterates over guesses of the costate variable. It may, however, require iteration
to solve the difference equations if they are nonlinear,

35 A number of other difference formulae will be discussed in exercise (E4), some
of which are accurate to higher orders.
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Long periods of time can, however, be modelled using a
series of expressions like (4.14), each holding over successive
intervals of time. If the total peridd were 100 years, for example, it
could be broken up into two intervals of fifty years each. Then, one
equation like (4.14) could link years O to 50, while another
connected years 50 to 100. Of course 50 years is still a very large
value for h, so it would usually be necessary to break the original
interval up into even smaller segments using many more equations.
If necessary, the solution can be made arbitrarily accurate by using a
sufficiently small step size h. No matter how many intervals are
actually used, in the end the original differential equation will have
been replaced by a system of difference equations which link values
of f{ )} at different points in time. Solving this system
simultaneously would yield the entire path of f{ ). For many models
the equations will be linear or easily linearized, so often the
solution can be found using a variant of Gaussian elimination. This
makes finite differences very fast and a natural choice for use with

general equilibrium models that employ Johansen's method.

To provide a more concrete example of how the method is
actually implemented, consider solving a fairly general investment

model with equations of motion as shown below:
At} = alr(t) + bHK({E) - () . {4.15)
K'(t) = dr(t) + eltK(t) - fl) . {4.16)
The model of section (2) is a special case of this in which b(t}=0.

Converting (4.15) and (4.16) into finite difference form using

forward differences produces the following:
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MERAG L ono+boK@-cn . (4.17)

BI-KO | gopremrm-fo . (4.18)

For convenience, equations (4.17) and (4.18) can be written

in matrix notation as shown:

as b0 2 o[ ] - [ew
dv ety 0 2 ko flo
At+h)
| Kit+h) |

(4.19)

This system approximates the true equations of motion, (4.15} and
(4.16), in the neighbourhood of t. The complete solution thus
requires a set of such equations, one for each interval of time h.
Collecting these together produces the final set of equations, which

will have the structure shown:

a®+  b® P 0 0o o [ Mt0) ct9
T BT P £ 0 o K(tO) 110)
0 o athe  beh  F o Mth) it}
0 o awh ety o B kil | = | o
MeN) ety
L Jf ¥ Lt
aeN+1
_K(tN +1 ) ]
(4.20)
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If there are N-1 intervals, this will be a system of 2N equations and
2(N+1) variables. Two of the variables are known from the model's
boundary conditions, K(t9) and A(tN), while another two are
irrelevant, K({tN+1) and A({tN*1). Using this information, we can drop
the last equation for K since it links K{t¥} and K(tN+1), This also
eliminates variable K(tN+!). By the same reasoning, we can also
drop A(tN+1} and the last equation in A. The result is a system of
2{N-1) equations in 2N variables, but two of the variables are known
from the boundary conditions. Dropping the spurious equations

and variables, partitioning the left side of (4.20} and rearranging

produces:
altO+f b9 Fl 0 0 0 A9 ct% o ol A
A% e(t0)+% o 20 o - || &Y ) o o || xe™
0 0 a(tl)+% bit}) Fl 0 . ath) clth) 00
0 0 dtd) e(t1)+% 0 El‘ Kihy =l mh | +Jo o
. MY L e % 0
] - HreN L i) 0 ;1]—
(4.21)

This direct use of the boundary conditions eliminates the need for
iteration and removes the numerical instability problem associated
with shooting methods. Equation (4.21) can be written compactly

as:

OF=D-B ; (4.22)

where ® is a matrix of coefficients, F is a vector of unknown values
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of A and K, D is a vector of coefficients and B is a vector resulting
from carrying out the matrix multiplication in the rightmost term
of (4.21). Solving the model requires finding the unknown values of

F. This can be accomplished by computing:36

F=01D-B) . (4.23)

Since approximations were used for derivatives in the model,
the results obtained using (4.23) will contain a certain amount of
error. This is known as truncation error because it arises from
dropping high-order terms in the Taylor series expansions used to
form the difference approximations. For the difference formulae
used above, the truncation error will be O(h). It is possible to
construct formulae that are accurate to higher orders {see exercise
(E7), for example}, but all will introduce some truncation error.
The severity of the problem depends on the step size h between
adjacent points of the solution. The dates at which these points are
placed are often called a "net" or a "grid", and grid spacing is

crucial to the numerical accuracy of finite difference solutions.

As the distance between grid points approaches zero, a finite
difference approximation converges to the true solution,37 so with
enough grid points, the results can be made arbitrarily accurate.
However, the size of © goes up with the square of the number of
points, and the steps required to solve (4.23) rise even more
rapidly, so as a practical matter there will usually be an upper limit

on the number of grid points that can be used. For this reason, the

36 In practice, the solution would never be computed using (4.23). Instead,
Gaussian elimination would be applied to the system in (4.22). Elimination is
much faster than maltrix inversion.

37 For a prool of this, see Isaacson and Keller {1966},
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grid must be chosen carefully to attain maximum accuracy at

minimum cost.

Two features of the grid pléy key roles in determining the
accuracy of the solution: the total number of grid points used, and
the location of those points in the interval [0,T]. To see why the
sheer number of grid points is important, consider solving a model
over a uniform grid of N intervals using difference formulae
accurate to Ofh). This would require N+1 grid points (the extra

one is for time 0) at a distance h apart, where h is given by:

2z~

h = (4.24)

The resulting grid would have points at times {0,h.2h,....(N-1)h, T},
and at each point the solution would be subject to truncation error
of order Of{h). In this situation, doubling N would cut h in half and
reduce the error at each point by roughly a factor of two. Thus,
doubling the density of the grid is a powerful tactic for reducing
truncation error. Moreover, comparing solutions on grids of N and
2N intervals gives a good indication of the extent to which
truncation error has affected the results. Also, it is possible to use
Richardson's extrapolation3® to exploit this fact to obtain even more

accurate results.

Another way to reduce truncation error is to abandon using a
uniform grid. It is often possible to make a solution much more
accurate by rearranging the locations of the grid points in time.
This has the advantage of keeping the size of the problem fairly

small. Intuitively, the way it works is as follows. In certain periods

38 gee Birkhoff and Rota (1978).
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of time, often late in the solution as the model nears the steady
state, the model's dynamic variables will be changing very slowly.
Moving grid points from these regions to periods where the
variables are changing rapidly improves the finite difference
approximation’'s ability to capture the model's true dynamic

behaviour.

In practice, shifting grid points around is an extremely
powerful tool for improving the accuracy of finite difference
solutions. The reason behind this stems from the Taylor series
expansions used to construct the difference formulae. To see why,

consider the Taylor series expansion below:

4 2
f(tre) = £0) + Fle + - %’f o (4.25)

In forming the forward difference formula used above, the terms
above first order were discarded. This introduced the following

error:

(t)e?
31 + ... .

(4.28)

Ignoring higher-order terms, this means that on a uniform grid,
truncation error would be highest where {” was largest. Similarly,
the solution would be very accurate in regions where f* was small.
Thus, shifting points from regions of low curvature to regions of
high curvature would improve the solution by reducing overall

truncation error.

Thus, there are two related techniques for reducing
truncation error in finite difference solutions. One approach is to

increase the number of grid points used, thereby reducing the
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distance between adjacent points and shrinking truncation error.
When this is costly or inconvenient, a second tactic is to place a
given number of grid points at strategic times in the solution
period. One way to do this would be to transfer points from regions
of low curvature to areas of high curvature. Another approach
would be to move points from uninteresting parts of the solution to
periods of more interest. Most of the time, of course, these two

reallocations will be about the same.

Overall, the finite difference method is versatile, robust to
numerical instability, fairly easy to implement and very fast to solve.
Furthermore, it is particularly suitable for Johansen-style general
equilibrium models because it results in a system of equations
which can be integrated directly into the Johansen solution
procedure.39 For these reasons, it was the method we chose to
solve the intertemporal general equilibrium model presented in the

next few sections.
5. An Intertemporal General Equilibrium Model

We now turn to the central topic of this paper: how
intertemporal behaviour can be integrated into a general
equilibrium model and what benefits that produces. As in the rest
of the péper, we will build the discussion around a particular
model--in this case, a five sector general equilibrium model with
intertemporal investment. Subsequent sections describe the
structure of the model, explain how it was solved, and present a
number of simulations showing how the inter- and intratemporal

parts of the model interact. The simulation results demonstrate

39 We will return to this point in section (9).
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two things: that general equilibrium effects have a strong impact on
investment behaviour, and that changes in investment brought
about by intertemporal optimization have a significant effect on
general equilibrium variables. Thus, integrating intertemporal
behaviour into general equilibrium models improves both types of
model. The remainder of this section presents an overview of the

model.

The finished, fully-integrated model consists of a sequence of
short run general equilibrium models linked together by an adjust-
ment-cost investment model. All of the general equilibrium models
have the same structure, but each represents the economy at a
different point in time. There are five sectors of production
denoted A, B, 1, 2, and 3. Sectors A, 1 and 2 produce consumption
goods, sector B produces capital services, and sector 3 produces
raw capital goods. There are two types of capital, K, and Ky, and
one type of labour, L. K, is created by industry A's investment and is
used solely in the production of good A. K, is created by sector B's
investment and is rented out to sectors 1, 2 and 3. Sectors 1, 2 and
3 are traditional general equilibrium industries which use a
malleable capital stock (K,) and do not do any investment. The
sectors are shown schematically in figure 5.1, and their attributes

are summarized in Table 5.1.

Sector A is fully integrated into both the general equilibrium
and investment models. It uses a capital stock that is specific to it
and must solve both a short-run production and a long-run
investment problem. Sector B operates more like a bank. It
invests to build up a stock of capital which is then rented out to

other industries for use in production. Thus, sector B solves a long-
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Table 5.1: Characteristics of the Sectors

Sector

Invests In  Capital Used

Output Produced

W=

Consumption good A
K,, capital services
Consumption good 1
Consumption good 2
Raw capital goods
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run investment problem but its short-run problem is trivial--it
rents out whatever it has. Between them, sectors A and B account
for all of the investment in the model, so all investment is the
outcome of intertemporal optimization. Finally, sectors 1 and 2 are
traditional zero-profit industries which rent their capital from
sector B and differ only in capital intensity. Both sectors produce
consumption goods. Sector 3 is also a zero-profit industry which
rents capital from sector B, but it makes raw capital goods.
Separating it from the others facilitates experiments involving the

price of raw capital goods.

The sectors were given these characteristics to emphasize
that intertemporal behaviour could be added gradually to an
existing general equilibrium model. Suppose a particular short-run
model had four sectors, all of which used a single capital good. The
first step in adding intertemporal investment would be to include a
fifth industry like sector B. That would allow the overall capital
stock to be determined by intertemporal optimization but without
requiring the structure of the existing four sectors to be changed in
any way. Later, it might be useful to relax the assumption that
capital is freely mobile between sectors. This could be done by
asserting that one or more of the industries use industry-specific
capital stocks. Each such sector would then have to solve its own
investment problem, and so would end up having the
characteristics of sector A. Thus, intertemporal behaviour can be
added to an existing model in stages; it is certainly not necessary to

rebuild the model completely.

Choosing the sectors to have the characteristics shown in
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Table 5.1 resulted in the model including two explicit
intertemporal investment problems: one each for sectors A and B.
These were linked to a sequence of short-run general equilibrium
models by a simple but flexible model of expectations formation.
This allowed simulations to be conducted under a variety of
assumptions about the accuracy of expectations. In all, eleven
general equilibrium models were used. The first corresponded to
the present while the eleventh was 100 years in the future. The
exact locations of the other equilibria in the interval [0,100] will be
discussed at length in section (9). The next section presents the

investment submodel in more detail.
6. The Investment Submodel

As in section (2), each firm chooses its investment path to
maximize the stockmarket value of its equity. Assuming once more
that the firm's short and long run optimizations are separable, the
outcome of its short run decision can be summarized by an earnings
function E(K,P), where K is its capital stock and P is a vector of
short run variables such as the price of the firm's output. All
investment is internally financed, so dividends are short run profits
less investment expenditure. Writing C(I,P} for the investment cost
function, where [ is investment, and following the method
described in section (2), the firm's investment problem at time 1
can be shown to be:

o

max [ ( E(K,P)-C(LP) )(1-Tde ™ dt |
T

subject to K’ = I-8K ; 6.1)
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where r is the interest rate, § is the rate of depreciation, and T¢ is
the dividend tax rate. This is precisely the problem described in
section (2). Given specific earnings and investment cost functions,
the principles of optimal control could be applied to generate first-
order conditions for value maximization. The completed model will
contain two of these investment submodels, one each for industries

A and B.
6.1. Investment by Sector A in Firm-Specific Capital

To formulate firm A's investment problem, the first step is to
derive its short run profit function from its production function.
Production of good A is taken to be a Cobb-Douglas function of
labour and capital, and the firm takes prices as given, so from the

production function:

P
X, = (Lp)faK,) 1 ¢a (6.2)
the short run profit function can be shown to be:

1- P -
E,(K,.P) = (";E%’(E%v“’)w w69
a

P
where L, is the labour used in production by industry A, and W is
the wage rate. Notice that the firm must form expectations about
both the future course of wages and the price of its product in

order to be able to compute the earnings of its future capital stock.

In addition to the earnings function, the firm's investment
cost function is needed in order to solve the optimization problem.
An intuitive way to obtain the function is to derive it from a

particular choice of the firm's investment-good production
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function. In this model we assume the firm produces its own
investment good by purchasing raw capital (Xg) and hiring labour
(L;) to install it. The amount of labour required is proportional to
the square of the amount of raw capital. This description can be
summarized by the Leontief production function below:
a La /2
Iazmin{X3,(6;] } (6.4)

where Xg is raw capital, L; is labour used by industry A in the
construction of its investment good, and 8, is a parameter. The

corresponding cost function is:

Cox3.P) = (PoX5 + WLL(1-T9) 6.5)

where TS is an investment subsidy. Minimizing investment costs
given the production function above requires that the following

hold:
1
o |Ta e
Ia =X3 = . (66)

Solving for x?, and L; in terms of [ gives:

X5=1 (6.7)

and

Lh=01> . (6.8)

a

Finally, this means the investment cost function can be written as:

CallP) = (Pal, + Wo,I2)(1-TS) . (6.9)
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Two important remarks must be made about this equaﬁon.
First, because 6, is not zero, the firm faces internal costs of
adjustment--the cost of new capital is convex in investment.
Second, adjustment costs depend on gross rather than net
investment. In the steady state, gross investment will be equal to
depreciation, so steady state adjustment costs depend on the size
of the capital stock. This feature will be relevant for a simulation
presented in section (10), but it could easily be removed by

rewriting the problem in terms of net investment.

Returning to development of the investment model, finding
the path of the capital stock requires solving an optimal control
problem using the short run profit and investment cost functions
above. The result is a system of differential equations--the
problem's first-order conditions--which must be solved to produce
an explicit expression for the capital stock over time. For sector A,

these first-order conditions are:

Ay = (Pg+2WO,1)(1-TH(1-T9) , (6.10)
A, = +d)hy - B(1-TY) (6.11)
K, =1,-8K, . (6.12)
where
I-g, eapajl/“‘ﬁa)
= ()| % W . .
B=(7 )( W (6.13)

a

Solving for investment as a function of A, and the exogenous

variables {see equation (2.22)) produces the following:
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1 a
a = Jwe, L(T-T9(I-T9 " F3) -

1 (6.14)

Inserting this into the capital accumulation condition gives the

equations of motion for sector A:

N, = (c+3)A, - B(1-TY) (6.15)

1 Ay P.)-5
2= 2we, (1-T9)(1-19) F3) %%

K’ {6.16)

6.2. Investment by Sector B in General Purpose Capital

The other investment sector, industry B, produces capital
services which it rents to other sectors. It takes prices as given, so
its earnings depend only on its capital stock and the corresponding

rental price:

Ep(Kp.P) = pKy, (6.17)

where p is the rental price of a unit of general purpose capital. The
sector's investment cost function is identical in form to that of

industry A, except that parameter 8, has been replaced by 6y

CyllpP) = (Pgly+ W6, [2)(1-TS) . (6.18)

The first-order conditions for this problem are given below:

Ap = (Pg+2WB, 1, )(1-T9)(1-T9) , (6.19)
Ay = (r+8)Ay, - p(1-TY) (6.20)
K’b = Ib"SKb . (6.2 1)

For this sector, investment is given by:
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M Sy Ay
b = awe, * (1-TY)(1-T9)

-P3) . (6.22)

Thus, sector B's equations of motion are the following:

My = (48], - p(1-T9) , (6.23)
. 1 M
%o = owe, (Tay(ors) - Ps) - 3Ky - (6.24)

7. The Short-Run General Equilibrium Submodel

The general equilibrium model includes the two investment
sectors (A,B), three "traditional” industries {1,2,3), one consumer
and the government. The traditional industries rent capital from
sector B and earn no short run profits. Consumption gobds are
produced by industry A and by traditional sectors 1 and 2. The
third traditional sector, 3, produces raw capital goods used in
investment. All prices in the model are those received by
producers, except for that of raw capital goods which is the

purchaser’s price.
7.1. Investment Sectors

As discussed above, production in sector A is a Cobb-Douglas
function of labour used in production and the industry's capital

stock:

X, = (Ly)a(K, ) ta . (7.1)

a

Maximizing profits on existing capital implies the labour demand

equation shown below:
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Lh = (i?\—gﬂ)l/(l-ﬁa)}{a _ (7.2)

Cost minimization in production of investment goods generates the

demands shown below for raw capital and investment labour:

Xz=1, , (7.8)
2
Ly = 0,01 . (7.4)

Finally, revenue less wage costs in production less investment costs

gives pre-tax dividends:

D, = P,X, - WL, - (P3x§ + WL;](I-TS) . (7.5)

Industry B produces only capital services, so its behaviour is
entirely determined by the optimal path of its capital stock.
Deriving the demands for raw capital and investment labour

produces the equations shown below:

X5=1, . (7.6)
Lp = 6,15 . (7.7)

Gross dividends are simply revenue less investment costs:

Dy, = pKy, - (PXa+WLy)(1-T9) . (7.8)

The equations above fully describe the short run behaviour of the
special investment sectors in the model.
7.2. Other Production

Three other sectors are included in the model: industries 1,
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2 and 3. These sectors rent their capital from industry B at price p
and do not invest. Production in each sector is Cobb-Douglas, as

shown below, where ie{1,2,3}):

X, = (LS " (7.9)

Straightforward optimization generates the factor demand

equations shown below:

_ L [PE Y
Li'yixi(wu-eﬁ)} , (7.10)

1-
Ky = = (W( E‘T . (7.11)

Finally, each sector is constrained to earn zero pure profits.

For industries 1 and 2 this condition is:

XP; = WL, + pKy, . (7.12)

Because the price of raw capital goods is the purchaser's cost, the
zero pure profit condition for industry 3 is slightly different, as

shown below:

X4Py = (14T (WLg+pKy) (7.13)

where Tz is the sales tax on capital goods.
7.3. The Consumer

The single consumer in the model supplies labour and owns
both of the investment firms, so income includes wages, dividends
and lump sum payments from the government. All income in each

period is spent on consumption; there is no saving (except
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earnings retained by firms) and the consumer does not forecast
future earnings. Thus, the consumer's budget constraint is the
following:

C = WL{1-T¥) + (D,+Dy)(1-TY + LS ; (7.14)

where C is consumption expenditure, TV is the tax on wages, and
LS is a lump sum payment from the government. Utility is a Cobb-
Douglas function of the consumption of goods A, 1 and 2, and labour
is supplied inelastically, so the demand system below can be
derived from utility maximization subject to the budget constraint

in equation (7.14):

XSP,(14T%) = o2C | (7.15)
X§P,(14T8) = acC | (7.16)
X5P,(1+4T7) = a2C (7.17)

2
where the o's are Cobb-Douglas exponents, and Ti, Té, and Tg are

sales taxes on goods A, 1 and 2, respectively.
7.4. The Government

The government is constrained to balance its budget, so
spending is equal to tax revenue less lump sum payments and
subsidies. Revenue is raised by dividend taxes, wage taxes and sales
taxes, while lump sum payments are made to the consumer and
subsidies are paid on investment expenditure. Thus, the

government's budget is given by the following equation:

G = T4D,+Dy) - ’I‘S(PS(X2,+Xg) + W(93I§+ebli))
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1 3
+ T3P, X, + TeP, X, + ToX,Py + TaPaX,
+T"WL - LS . (7.18)

The government demand system is derived from a Cobb-Douglas

utility function and consists of the following equations:

P, (14TY) = oG | (7.19)
K9P, (14T0) = abG . (7.20)
XoP,(14T2) = aaG . (7.21)

7.5. Market Clearing

The final group of equations necessary to define the model is
the set of market clearing conditions. For goods A, 1 and 2, total
demand is the sum of private and government demand. Demand for
good 3 is the sum of raw capital demand by the two investment

sectors. The four equations are:

X, =X5 + Xy (7.22)

X, =5+ x5 (7.23)

X, =X5 + X5 (7.24)
a b

Xy = X5+ X3 . (7.25)

In addition, factor market clearing for labour and capital B requires

the following:
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L=lLj+La+Ly+L; +Ly+Lg . (7.26)

K, = Kp + K + Ko, . (7.27)

7.6. Other Equations

In addition to all of the equations above, a price deflator was
also incorporated into the model. The index, {, was defined as the
cost of the current bundle of consumption and government goods at

current prices divided by its cost at period zero's initial prices:

1 2
X, Po(1+T8+X P (14Tg) X, Py (14T2)

(7.28)

Ko [Po (14T +X, [Py (14T D+ X, [Py (14T,

where the variables enclosed in parentheses and subscripted by "b"

are base case values.
8. Expectations

The two investment models described in section (6) depend
on a number of future variables that the firms take as given. Strictly
speaking, what appears in the optimizations are firms' expectations
of those variables. This means that we must make an assumption
about how expectations are formed in order to be able to link the
investment and general equilibrium models. One possibility is to
assume that the expectations are "rational", by which we mean that
in the absence of any unforeseen shocks, firms can predict the
course of the economy perfectly. To implement rational
expectations the variables needed in the investment model could

be taken directly from their counterparts in the short-run general
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equilibrium models. The price of capital appearing in an
investment model, for example, would be exactly equal to the price
generated by the general equilibrium model for the appropriate
date. Solving the complete model simultaneously would yield a
path of wages and prices consistent with firms' planned capital
stocks, and also a capital accumulation plan consistent with wages
and prices. Thus, one possible assumption about expectations is

that they are rational, which is straightforward to implement.

On intuitive grounds, rational expectations might seem
implausible--it appears to require excessively sophisticated
behaviour on the part of agents. However, it has one compelling
characteristic: it is the only expectations mechanism that is not
dominated from an agent's point of view; forming expectations any
other way means an agent would systematically be wrong about the
future. As long as there are no costs to forming rational
expectations, it will always be in an agent's interest to do so. For
this reason, we will adopt the rational expectations assumption for
many of the simulations described in this paper. There is nothing
about the model, however, that makes this necéssary; any

expectations mechanism could have been used.

In fact, the actual mechanism in the model contains
provisions for introducing particular departures from complete
rationality. The investment problems outlined in section (6)
depend on expectations about p, W, P,, Pg, T4 and TS. For each of
these, an expectation was formed by combining its true general
equilibrium value with an exogenous component. For example, the
expected wage in the investment submodel, W¢, was formed out of

the true general equilibrium wage, W, and a fixed expectation W%,
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as shown below:

We = (vv)xn(wx)l“}‘n : (8.1)

where A, was a parameter ranging from zero to one. When A, =1,
firms have perfect foresight; when A,=0, the expected wage is set
to the exogenous value WX, This procedure was also carried out for
expectations of the exogenous variables T4 and TS, but a separate

parameter, A,, was used.

Parameters A, and A, allow simulations to be run under
different assumptions about the extent to which firms can predict
future variables. When both A, and A, are set to 1, firms have
perfect foresight. On the other hand, if A,=0 and A, =1, firms
understand what tax changes are planned for the future, but they
are unable to correctly predict the general equilibrium
consequences. Setting A, and A, both to zero converts the model
to a set of linked static equilibria in which investment is not
affected by anything. The remaining case, A =1 and A,=0 is of little

interest.
9. Implementing the Model

We have now completed the economic specification of our
small intertemporal general equilibrium model. Before it can be
used to analyze experiments, however, it must be implemented on
a computer. In this section, we describe one way that could be
done. The method we present is straightforward and produces a
versatile model that solves quickly. It is by no means the only way
the model could have been implemented, however. Thus, it is

important to distinguish between the model, described in sections
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(5) to (8}, and the solution method, which is described below.

There are four tasks to accomplish in implementing a modelk
selecting the solution algorithm, constructing the data set,
partitioning the variables into endogenous and exogenous sets, and
testing the final program. The next four sections describe each of

these steps in detail.
9.1. The Solution Algorithm

Solving the two investment problems requires solving a
system of differential equations, while solving the short-run general
equilibrium model requires solving a large system of nonlinéar
equations. Both components of the model must be solved
simultaneously, so the entire process is not trivial. This section
will set out the basic approach used and discuss how close the

numerical solution will be to the true solution.

In order to solve the investment problems of the firms in sec-
tors A and B, the equations of motion for the two problems were
converted to their finite difference equivalents. For sector B this

produced the following expressions:

A (t+h)-Ap (1)

h = (r(O)+8)A, (1) - pS(O[1-(THE)E] (9.1)
Ky, (t+h)-Ky (t) 1 . . '
h = 2we(e,, (Ap(t) - P3(t) ) - 8K, (1) (9.2)

where Ap(t) has been introduced solely for notational convenience,

and is given by the expression:

. Ap(t)
= (- TR (TS )9

A () (9.3)
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Equations (9.1) and (9.2) were obtained by inserting the
appropriate terms from (6.23) and (6.24) into the general
expressions {4.17) and (4.18). The results for sector A are very
similar. Notice that we have been careful to write all the variables
as functions of time, and to mark all of the expected variables with
a superscript "e". This will be essential when we link the

investment models to the short-run general equilibrium system.

Equations (9.1) and (9.2} are linear in K and 2, so if the time
paths of the other variables were known, the complete system of
finite difference equations could be solved easily using Gaussian
elimination. Thus, if we only wanted a partial-equilibrium
investment model we could stop here. In a general equilibrium
analysis, however, many of those variables are endogenous and are
not known prior to solving the investment problem. To impose
rational expectations, for example, the expected endogenous
variables at all future times must be consistent with the short-run

general equilibrium model.

In practice, expected values are needed for each grid point in
the finite difference approximation. If there are N grid points,
there will be N systems like {9.1) and (9.2), each holding at a
different point in time. Every system will require expected values
for the endogenous variables, so the short-run model will have to
be solved at each point on the grid. To accomplish this, we
converted the short-run model to its linearized percentage change

form40 and replicated it for each grid point. The result was a set of

40 This is an application of Johansen's method. For further details on
linearization, refer to Dixon, et. al (1982).
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N identical linear short-run models holding at different points in
time. Linearizing the short-run model made it necessary to
linearize the investment model as well, but that had an extremely
useful consequence: the set of short-run models and the investment
model had both become systems of linear equations. This made it
possible to obtain an intertemporal solution simply by applying

Gaussian elimination to a very large system of equations.

The complete model thus entails Taylor series expansions in
both time (finite differences) and variables (linearization). This
means the solution is only approximate, so steps must be taken to
ensure that truncation error is kept adequately small. However, the
results may be made arbitrarily accurate by decreasing the step size
used in each expansion, so at least in principle this is not an
insurmountable problem. We will return to this topic in section

(9.4).

For the simulations described below, we implemented the
model with the following features. The terminal time--the point at
which the steady state value of A was imposed--was chosen to be
100 years in the future. This made the overall solution period of
the model [0,100]. Eleven grid points were used in the finite
difference approximation: one at year 0, one at year 100, and nine
scattered in between. To obtain adequate numerical accuracy, a
nonuniform grid was used. Thus, the grid points were not
necessarily located at multiples of ten years. The subject of grid

spacing will be discussed further in section (9.4).
9.2. The Data Set

In linearizing the model, we have implicitly linearized about a
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particular solution to the model which we will call the base case. In
a static model, the base case is a single equilibrium, and it is usually
obtained from an input-output table. An intertemporal model, on
the other hand, requires a complete intertemporal base case for
the entire period of interest. This presents a formidable problem:
most of the years in the simulation lie in the future, and the only
one that could possible be observed is the first.4! If the base case
cannot be constructed from observable data, it might be necessary
to compute a full nonlinear solution to the model in order to obtain

it.

There is one situation, however, in which the entire base case
can be inferred from data for the first year: when the first year is a
steady state. If the economy starts at a steady state, all succeeding
years will look exactly like the first one, so the entire future path of
the economy is known. For many experiments this specification is
perfectly acceptable. The most important question about a
particular shock is usually how far it pushes the economy away from
the base case path, not how the base case itself is evolving. Thus,
for many experiments the base case can be computed by replicating
the first year. For the experiments reported below, this is the

approach we adopted.42

The data set we used is presented in appendix Al. It has a

number of interesting features, but does not represent any

41 For retrospective (counterfactual) simulations, it may be possible to observe a
number of the initial equilibria, but there will always be some that are
unobservable.

42 In other circumstances, such as counterfactual simulations, it may be

niecessary to compute the base case explicitly. For an example of how that can
be done, see Wilcoxen (1988).
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particular economy. One of its most important characteristics is
that the patterns of private consumption and government spending
are identical, so no compositional effects arise when changes in
taxes induce transfers of income between the private and
government sectors. We built this feature into the data set

deliberately so it would be easier to interpret the model's results.
9.3. Partitioning

Once the solution algorithm and the data set have been pre-
pared, the next step is to decide on a partitioning of the model's
variables into endogenous and exogenous sets. One of the
advantages of using the Johansen approach is that it is easy to
change the partition for individual experiments, so the partition
established at this stage does not constrain future simulations at all,
For other solution algorithms, however, the partitioning done at
this stage will be permanent; it will be impossible to switch the
endogenous and exogenous variables later. Table 9.1 shows the
basic list of exogenous variables used in the experiments discussed

below.

Two consequences of this choice of exogenous variables
should be noted. First, since government spending is exogenous,
and the lump sum payment is endogenous, any revenue accruing
from changes in tax rates will all be passed back to households.
Second, since the price deflator is exogenous, it will be the model's
numeraire. The role of the numeraire in an intertemporal model
differs quite a bit from its role in a static setting. In particular, the
numeraire may have to establish the rate of pure inflation in

addition to setting the overall price level. In the model above, for
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Table 9.1: The Exogenous Variables

Symbol Description

K, Sector A capital (period 0 only}

Ky Sector B capital (period O only)

L Total labour supply

G Government spending

Ty Tax on wages

Tz Sales tax on good A

T; Sales tax on good 1

Ti Sales tax on good 2

T:: Sales tax on good 3

Td Dividend tax

TS Investment subsidy

Y Technical change parameter, industry 1
Yo Technical change parameter, industry 2
Y3 Technical change parameter, industry 3
p* Exogenous expectations, rental price

Wx Exogenous expectations, wage rate

P§ Exogenous expectations, raw capital price
P}; Exogenous expectations, price of good A
Tdx Exogenous expectations, dividend tax rate
TSX Exogenous expectations, investment subsidy

r Interest rate

s Price deflator
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example, there is no equation describing how the price level
evolves from one year to the next. This means that the rate of pure
inflation will be determined by the path of the numeraire over time.
Thus, if the numeraire were constant (as it is in the data set
described above), there would be no pure inflation: the price of
theaggregate consumption bundle would be constant from one year
to the next. On the other hand, if the base case numeraire rose by
5 per cent a year, the model would embody a 5 per cent rate of
pure inflation. Thus, it is possible to think of the numeraire as
having two distinct functions: determining the level of prices in the
first period, and selecting the rate of growth of the price level over
time. A more detailed model might include a money demand
equation and an exogenous supply of money, in which case the
price level and the rate of pure inflation would be determined by
the (exogenous) money supply. In the absence of an explicit model

of the money market, the numeraire performs the same function.
9.4. Testing the Complete Model

Once the two finite difference investment modules were
éombined with the eleven general equilibrium models, and the
entire system was linearized, a number of special experiments were
run to check that the model was programmed correctly. This is an
essential step if the numerical results of the model are to be
believed. Three simulations were used: a homogeneity test, a
surprise dividend tax at time zero, and an increase in the tax on

wages.

The homogeneity test consists of a simultaneous increase in

the price deflator and the nominal lump sum payment. The effect
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of this should be to raise all nominal variables by the amount of the
increase, and to leave all real variables unchanged. The model
produced this result correctly which indicated that it was free of
gross programming errors. The second test was slightly more
interesting. As noted in section (3}, increasing the dividend tax at
time zero is an unavoidable pure profits tax. As such, it should have
no effect on the capital stock or output of any industry, although
dividends and firm values should fall by the amount of the tax.
There should also be a large shift of income from consumers to the
government, but since both sectors have the same patterns of
demand, there will be no compositional effects. These results were
also correctly generated by the model. The final test was an
increase in the wage tax paid by consumers. Since labour supply is
completely inelastic, the effect of a wage tax should be a simple
transfer of income to the government. Again the model produced
the correct results. Together these experiments provide strong
(albeit indirect) evidence that the model's implementation was free
of programming errors. Having verified this, it was necessary to
check that the linearized model would correctly converge on less

trivial experiments.

In a purely mathematical sense, the model is a system of
partial differential equations in time and variables which are solved
by integrating over time using finite differences and over variables
using Euler's method.43 The accuracy of the solution depends on
the step size used in these integrations: the solution will approach

the true solution as the step size in both time and variables is made

43 See Dixon, et. al {1982} for an explanation of how Johansen linearization is
related to Euler's method.
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infinitesimal.44 To verify that the model was formulated correctly,
it was necessary to show that the numerical solution could be made
arbitrarily close to the true analytical solution for a particular
experiment. Incidentally, this shows how accurate results can be

obtained with a fairly small number of steps in each dimension.

As discussed in section (4}, for most experiments it is
impossible to obtain an analytical solution to the investment
problem of either firm. One exception, however, is an announced
increase in the dividend tax. Under partial equilibrium (no
feedback from the firm's decision to the variables it takes as given),
the analytical solution to a dividend tax experiment can be obtained
in a straightforward manner.45 By comparing the the results of
numerical simulations to the analytical solution, the accuracy of the

former can be assessed.

The actual experiment we used was an increase in the
dividend tax rate from 10 per cent to 20 per cent, to take effect
ten years in the future. The expectation parameters discussed in
section (8) were set to A,=0 and A,=1, so firms ignored any
feedback effects from their actions to the price variables in their
investment decisions. The results of the experiment were
discussed in detail in section (3}, where the analysis went roughly
as follows. The announcement of the tax causes firms to pay large
dividends immediately before the tax takes effect. This drives

down investment, so when the tax is implemented the capital stock

44 As shown in Dixon, et. al {1982}, truncation errors in the Johansen
linearization can be made arbitrarily small by applying the shock in a series
of small steps.

45 This is discussed in detail in one of the exercises.
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will be lower than it would have been. Once implemented,
however, the tax falls on pure profits, so firms return to their pre-
announcement behaviour and the economy gradually returns to the
original steady state capital stock, although owners of capital have

suffered a windfall loss.

To assess the accuracy of different numerical solutions, we
examined how well they captured the true value of the capital stock
in year ten. This is a good measure of the overall accuracy of a
solution because the true path has a cusp at that point. Recall from
section (4) that truncation error will be large in regions where the
high-order derivatives dropped from the difference formulae are
large. At a cusp, the first derivative changes discontinuously and
the second derivative goes through infinity. In a numerical
simulation, this will manifest itself as rounding of the solution near

where the cusp should be.

The results of several experiments are shown in table 9.2.46
The rows indicate how many steps were used to impose the
exogenous shock, while the columns show how many grid intervals
were used in the finite difference approximation. Each entry gives
the value of K(10) obtained with a particular combination of
iterations and grid points. Step sizes decrease downward and to
the right, so the solution should become more accurate in those
directions. The bottom row was obtained by solving the investment

model without linearizing. Since that is equivalent to using an

46 The values in this and subsequent tables were computed using slightly
different difference formulae from those shown in section (9). Implementing
the modet as it is described in this paper would produce slightly different, but
qualitatively similar, results.
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Table 9.2: The Effect of Grid Density and Iterations
on the Value of the Capital Stock at Period 10*

Number of Grid Intervals
Iteration 10 20 40 80

.9623 9376 .9247 .9180
.9605 9361 .9236 .9174
.9596 93563 .9233 9171
.9591 9350 .9229 9169
.9586 .9346 .9227 .9168

g 00D

* The true value of K(10) is .9113.
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infinitesimal step size, the row is labelled "infinite" iterations.

Several things are readily apparent. First, increasing either
grid density or iterations improves the solution. Second, because
first-order Taylor expansions form the basis of the linearizations in
each dimension, the difference between values obtained from
successive halvings of the step size decreases by roughly a factor of
two. Third, from the initial 1-iteration, 10-grid-interval solution,
accuracy increases most rapidly by increasing the number of finite
difference grid points. This indicates that the error introduced by
the finite difference approximation overwhelms that of the
Johansen linearization. In fact, doubling the grid density improves
the solution by more than increasing the number of Johansen
iterations to infinity. This shows that Johansen linearization error is

trivial, but that introduced by finite differences may not be.

As noted in section (4), for large models it may not be feasible
to eliminate finite difference truncation error by using a vast
number of grid points. For such models, however, it is possible to
improve the approximation by shifting grid points from regions of
low curvature to regions of high curvature. In practice this involves
moving points from late years, say year 80 or 90, to times nearer
implementation of the policy. Table 9.3 shows five possible

allocations of nine points to times between 0 and 100 years.

For an announced tax change which is to be implemented in
year 10, the system will almost be back to the steady state at late
years like 90. High-order derivatives of the model's variables will
be close to zero there, so it might be desirable to move such points

to an earlier time where the derivatives are large. One possibility
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Table 9.3: A Selection of Grid Spacings

Grid
Point A B C D G
0 0 0 0 0 0]
1 10 5 5 5 5
2 20 10 7 7 7
3 30 20 10 9 9
4 40 30 20 10 10
5 50 40 30 20 15
6 60 50 40 30 20
7 70 60 50 40 35
8 80 70 60 50 50
9 90 80 70 60 75
10 100 100 100 100 100

95



would be to shift the point from year 90 to year 5; this is shown in
grid B above. Continuing the rearrangement produces the set of
grids shown in Table 9.3. The dividend tax was then simulated over
each grid, producing the results shown in Table 9.4. Again, results

are shown for several iterations over the shock.

Table 9.4 shows two important properties. First, using a non-
uniform grid does not harm convergence when the number of itera-
tions is increased. This can be seen by reading down the columns.
Second, rearranging a limited number of grid points can produce a
solution almost as accurate as increasing the density of a uniform
grid by a factor of eight. This means that using a limited number of
grid points does not necessarily produce an unreasonable amount of

finite difference truncation error.

At this point, we have verified that our computer
implementation of the model behaves correctly for a variety of
experiments. It has produced correct results for the homogeneity
test, the surprise dividend tax test and the wage tax test. In
addition, we have subjected it to a more difficult test by computing
numerical solutions to an experiment whose analytical results are
known. Since it has passed all of these tests, it can now be used to

run simulations.
10. Some Illustrative Simulations

We had two motives for presenting the model above. The
first was to demonstrate how an intertemporal general equilibrium
model can be built; that task has now been accomplished. The

second goal was to show that building such models is worthwhile: it
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Table 9.4: The Effect of Grid Choice and lterations

on the Value of the Capital Stock at Period 10*

Grid
Iterations A B C D G
1 .9623 .9407 .9328 .9233 .9199
2 .9605 .9392 .9310 .9226 .9192
4 .9596 .9384 .9303 .9222 .9187
8 .95391 .9381 .9300 L9219 .9185
oo .9586 9377 .9297 L9217 .9183

* The true value of K(10) is .9113.
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is to that topic that we will now turn. The evidence we present will
be a number of simulations whose results could not have been
obtained from either a short-run general equilibrium model or a
partial equilibrium investment model. Of course, there are many
experiments for which one or the other of those techniques is
perfectly adequate. We will not argue that an intertemporal general
equilibrium model is always necessary; just that it is a very useful

approach for certain problems.
10.1. The Importance of Foresight

Having gone to all the trouble of integrating the two kinds of
model, one question we might ask is whether we have improved
the driginal investment model. Does it matter that general
equilibrium linkages have been added, or was the partial
equilibrium model just as good? The answer depends on what
assumption we want to make about agents' expectations. If we are
content to give them beliefs about the future that are exogenous and
completely fixed, then nothing has been gained by moving to an
integrated model. On the other hand, if we want agents to have
rational expectations, adding the short-run general equilibrium
models makes that possible. This suggests an important question:

does it matter whether expectations are rational?

Using our integrated model, it is possible to test precisely
that point. The expectations parameters, A, and A, allow us to run
simulations under either perfect foresight or fixed expectations.
Setting both parameters to one produces perfect foresight; setting
either of them to zero produces some form of fixed expectations.

One case of fixed expectations is somewhat appealing: perhaps
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agents have perfect foresight with respect to taxes but have fixed
beliefs about prices. To be concrete, a firm might know the future
path of the dividend tax accurately from government proclamations,
but be completely unaware that the tax will end up changing the
wages and prices it faces. This form of expectations can be
simulated by setting A, to one and A, to zero. To see whether this
differs significantly from perfect foresight, we can run a typical

experiment under the two assumptions about A, and &,.

The experiment we chose was an announced change in the -
dividend tax from 10 per cent to 20 per cent to be implemented in
period ten. In this experiment, and all of the others described
below, ten finite difference intervals were used with grid points
placed according to column G in table 9.3. The dividend tax
experiment was chosen because it has no permanent effect on
prices and wages. Thus, even the agents without perfect foresight

will not be wrong forever.

The results of these two simulations are shown in figure 10.1.
Each graph gives the percentage change in a particular variable
from its base case value in the corresponding year. Different panels
show capital stocks A and B, investment A and B, the wage, the
rental price of capital B, the price of good A, dividends paid by
sectors A and B and consumption. Consumption is unchanged in
the long run because the government returns any extra revenue
through lump-sum payments. The paths marked "P" are for perfect

foresight; those marked "F" are for fixed expectations.

The striking feature of figure 10.1 is that perfect foresight

with respect to prices and wages attenuates the response of the
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An Increase in the Dividend Tax

Figure 10.1
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model by about 50 per cent. This affect even occurs in period zero:
investment falls less than half as much under perfect foresight.
The reason the simulations are sd different is that as the capital
stock declines, the price of each firm's output rises in response.
This keeps returns higher in the period before implementation, so
the firms with foresight will not let their capital stock deteriorate

as fast as those expecting the price to be unchanged.

One other important feature of the results is that many of the
variables change substantially in the period before the tax is imple-
mented. This demonstrates the second part of our assertion about
the usefulness of building intertemporal models: intertemporal
optimization by investors can have a substantial effect on the
economy even before an anticipated event occurs. In a static model,
expectations of future policy changes can never affect current

variables.

From this simulation we conclude that adding general equilib-
rium effects has changed the investment model substantially. To
the extent that agents have rational expectations, a partial
equilibrium investment model will overstate the response of
investment and the capital stock to any given shock. Moreover, the
inaccuracy can be as much as 50 per cent. Finally, both sets of
results also show that intertemporal effects can have significant

consequences for ordinary general equilibrium variables.
10.2. Indirect Dynamic Effects

Another advantage of the integrated model is that it can be

used to study the dynamic effects of policies which only influence
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the investment problem indirectly. One example of this would be a
change in sales taxes. Sales taxes do not appear in either firm's
investment problem because the firms are only interested in the
price they receive, not in what purchasers actually pay. In general
equilibrium, of course, changing sales taxes would usually change
the prices faced by a producer. Thus, even though sales taxes do
not enter the investment model explicitly, they can still affect it by
changing the prices that do appear in the problem. Using the
integrated model allows these effects to be captured. This section
presents two sales tax simulations, each of which highlights a

different characteristic of the model.

Figure 10.2 shows the effect of an announced increase in the
sales tax on good A to be implemented at year ten. The general
equilibrium effect of the tax is to raise purchaser prices and lower
producer prices. This makes investment in sector A less attractive,
so its capital stock begins to decline. The path of sector A's
investment and capital stock is very similar to that displayed in
exercise (E1), and comes about for the same reason: there is a
decline in the producer price of good A. The shock has a modest
effect on industry A, reducing its long run capital stock by about 6

per cent,

The decline in sector A has effects throughout the economy.
It frees up labour that used to be employed in sector A, causing a
drop in the wage rate. Lower wages benefit sector B by lowering its
investment costs, so I, increases and K, rises over time. This

drives down the rental price of capital B, so producer prices of
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An Increase in the Sales Tax on Good A

Figure 10.2
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goods 1, 2 and 3 must fall since the wage also fell. The producer
price of good A also falls, although the purchaser's price has risen

because of the tax.

The behaviour of sector A's dividend stream is striking: before
the tax is implemented, D, actually increases. As discussed in
exercise (E1), this comes about because investment drops in
anticipation of the tax, leaving more earnings to be distributed as
dividends. Once the tax is in place, however, fewer dividends can
be paid so D, drops below its base case value. The present value of
the change in the dividend stream is negative, so the tax results in

a windfall loss to owners of the firm.

To summarize this experiment, an anticipated change in a
sales tax can produce interesting intertemporal effects that could
not be captured by either a partial equilibrium investment model or
a static general equilibrium model. This point is further
emphasized by a second sales tax experiment which introduces a
shock that is even further removed from the investment models: an
increase in the tax on good 2. Sector 2 does not do any investment
itself, so the effect on investment of increasing the sales tax on
good 2 will only occur through indirect general equilibrium

linkages.

The results of simulating an increase in Ti are shown in
figure 10.3. The main difference between this and the previous
experiment is that the capital stock in both sectors A and B rises
over time. The source of this curious result is that sector 2 is very
large and very labour intensive. A small contraction in its output

leads to a substantial drop in the wage. This lowers investment
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Figure 10.3: An Increase in the Sales Tax on Good 2
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An Increase in the Sales Tax on Good 2

Figure 10.3 continued
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costs for both sectors A and B, so investment rises and both capital
stocks grow. Finally, growth of the capital stocks causes the rental
price of capital B and the price of good A to fall. In the end, sector
A has gained, producing slightly higher dividends, while sector B's

dividends have fallen considerably.

Overall, the three simulations presented in this section
indicate the wide variety of experiments that can be analyzed using
an intertemporal general equilibrium model which could not be
studied in a static or partial equilibrium context. For many policy
questions, this will easily justify the extra work required to build an

intertemporal model.
11. Goals and Reading Guide

In this paper we have tried to illustrate the basic techniques
used in intertemporal modelling, and to show how they can be
applied in building an intertemporal general equilibrium model.
We believe that by reading it and working through the exercises,
you will develop the skills needed to understand the intertemporal
models you come across in the literature and to be able to build

your own. In particular, we hope you will:

{1) be able to discuss what circumstances call for the use of an

intertemporal model;

(2) understand how to build theoretical models of intertemporal
decisions from basic principles such as arbitrage, and to

understand g-theoretic investment models in particular;

(3) be able to use graphical techniques such as phase planes to
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describe in qualitative terms how an intertemporal model will

respond to a shock;

(4) be familiar with numerical methods that can be used when it
is necessary to obtain quantitative results from an intertemporal

model;

(5) know how to integrate intertemporal decisions into general
equilibrium models, and be able to discuss what costs and benefits

that entails.

Intertemporal modelling uses a number of mathematical
methods that you may not have encountered before. The reading
guide for this paper is intended to help you fill in gaps in your
knowledge of optimal control, differential equations, numerical
methods and linear algebra. It also includes a number of references
to particularly important or useful parts of the economic literature

on intertemporal analysis.

108



READING GUIDE

BEGIN

Models of intertemporal decisions usually require methods of opti-
mization beyond the Lagrange multiplier approach used in static
problems. Two frequently used techniques are optimal control and
the calculus of variations. Actually, optimal control is a fairly recent
generalization of the calculus of variations, and can be used to solve any
problem that can be solved by the older technique. However, some
models are more easily formulated as calculus of variations problems,
so it is helpful to understand both techniques. For applied work, the
reference of choice is definitely Kamien and Schwartz (1981). It in-
cludes clear, detailed expositions of both methods and has scores of
interesting examples. For a more theoretical treatment, see Leitmann
(1981).

Interested in using optimal control in stochastic problems?

yes no

See Bryson and Ho (1975). It also
discusses feedback control and
optimal filtering methods, such as
the Kalman filter, that can be used
when the values of state variables
are uncertain.

The first-order conditions obtained from intertemporal optimization
problems almost always involve differential equations, so some back-
ground in that area is essential. It is particularly important to under-
stand first order linear differential equations with constant coeffi-
cients. Not all models fall into that class, but understanding it is the
key to understanding more difficult kinds of differential equations. For
a basic introduction, see any introductory differential equations text-
book; for an elegant treatment at the intermediate level, see Birkhoff
and Rota (1978), particularly chapters 1, 3 and 5.
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i Need numerical results?

no yes

Somewhat familiar with numerical analysis
and two point boundary value problems in
general?

yes no

An outstanding reference for nu-
merical methods of all types is
Press, et al. (1986). It is clear, well
written and comprehensive. More-
over, it provides numerous referen-
ces to other sources, should addi-
tional information be necessary.
Source code is also supplied for the
algorithms described.

For a detailed treatment of two point
boundary value problems, see Roberts and
Shipman (1972).

Interested in seeing more examples of intertemporal models? |

yes no

Blanchard and Fischer (1989) pro-
vides an excellent survey of in-
tertemporal models in macroeco-
nomics. Chapter 2 is of particular
interest as it presents a number of
basic intertemporal investment
and consumption models.

You should now be well equipped to build and analyze intertemporal
models of all types.

110



REFERENCES

Birkhoff, Garrett and Gian-Carlo Rota {1978} Ordinary Differential
Equations, New York: John Wiley and Sons.

Blanchard, Olivier Jean and Stanley Fischer (1989} Lectures on

Macroeconomics, Cambridge: MIT Press.

Bryson, Arthur E. Jr. and Yu-Chi Ho (1975) Applied Optimal
Control: Optimization, Estimation and Control, Washington:

Hemisphere.

Dixon, Peter B., B.R. Parmenter, John Sutton and D.P. Vincent
(1982) ORANI: A Multisectoral Model of the Australian
Economy, Amsterdam: North-Holland.

Dixon, Peter B., B.R. Parmenter, Alan A. Powell and Peter J.
Wilcoxen (forthcoming) Notes and Problems in Applied

General Equilibrium Analysis, Amsterdam: North-Holland.

Eisner, R. and R.H. Strotz (1963) “Determinants of Business
Investment," in Impacts of Monetary Policy, Englewood Cliffs,

New Jersey: Commission on Money and Credit, pp. 59-233.

Fair, Ray C. (1979) "An Analysis of a Macro-Econometric Model with
Rational Expectations in the Bond and Stock Markets”,

American Economic Review, 69{(4}, pp. 539-552.

Fair, Ray C. and John B. Taylor (1983) "Solution and Maximum
Likelihood Estimation of Dynamic Nonlinear Rational

Expectations Models", Econometrica, 51(4), pp. 1169-1185.



Fox, L. (1962) "Numerical Solution of Ordinary and Partial
Differential Equations”, London: Addison-Wesley.

Gould, J.P. {1968) "Adjustment Costs in the Theory of Investment
of the Firm", Review of Economic Studies, 35(1), pp. 47-55.

Hayashi, F. (1982) "Tobin's Marginal q and Average q: A Neoclassical
Interpretation”, Econometrica, 50(1}, pp. 213-224.

Isaacson, E. and H.B. Keller (1966) Analysis of Numerical Methods,
New York: John Wiley and Sons.

Kamien, Morton I. and Nancy L. Schwartz {1981) Dynamic
Optimization: The Calculus of Variations and Optimal Control

in Economics and Management, Amsterdam: North-Holland.

Leitmann, G. (1981} The Calculus of Variations and Optimal Control:

An Introduction, New York: Plenum Press.

Lipton, D., J. Poterba, J. Sachs and L. Summers {1982) "Multiple
Shooting in Rational Expectations Models", Econometrica,

50(2), pp. 1329-1333.

Lucas, R.E. (1967) "Optimal Investment Policy and the Flexible

Accelerator”, International Economic Review, 8(1), pp. 78-85.

Modigliani, Franco and Merton Miller (1958) "The Cost of Capital,
Corporation Finance and the Theory of Investment”, American

Economic Review, 76(3), pp. 297-313.

Press, W., B. Flannery, S. Teukolsky and W. Vetterling (1986)

Numerical Recipes, New York:Cambridge University Press.



Roberts, S.M. and J.S. Shipman (1972} Two-Point Boundary Value
Problems: Shooting Methods, New York: American Elsevier.

Strang, Gilbert (1980) Linear Algebra and Its Applications, New

York: Academic Press.

Summers, L. H. (1981) "Taxation and Corporate Investment: A g-
Theory Approach”, Brookings Papers on Economic Activity,
No. 1, pp. 67-127.

Tobin, J. (1969} "A General Equilibrium Approach to Monetary
Theory", Journal of Money, Credit and Banking, 1(1), pp. 15-
29,

Treadway, A. (1969) "On Rational Entrepreneurial Behavior and the
Demand for Investment”, Review of Economic Studies, 3(2),

pp. 227-39.

Wilcoxen, P.J. (1985a) "Numerical Methods for Investment Models
with Foresight", IMPACT Preliminary Working Paper No. IP-

23, University of Melbourne,

Wilcoxen, P.J. (1985b) "Computable Models of Investment with
Foresight", University of Melbourne, Department of

Economics, Working Paper No. 138.

Wilcoxen, P.J. (1988) "The Effects of Environmental Regulation and
Energy Prices on U.S. Economic Performance”, Ph.D. Thesis,

Harvard University.

113



El. The Effects of a Price Shock

Section (3} explored the consequences of a dividend tax
change for the model of section {2). There are, however, several
other interesting experiments that can be examined with the
model. One of these is an increase in the price of the firm's output,
which will be the subject of this exercise. For convenience, the

model's investment equation and equations of motion are shown

below:
1 A
i= P (ﬁ—a - Py . (2.34)
Vo= (r+d)A - B(PI1-TY) , (2.35)
A Py
K= - - . 2.36
2we(1-T9) oK 2wo ( )

{a) Using a phase diagram, show the effect of an unexpected
immediate, permanent increase in the price of the firm's cutput.
Also, sketch the paths of the multiplier, investment and the capital

stock over time. Briefly explain the results.

{b)  Using another phase diagram, show the effect of a permanent
increase in the firm's output price expected to occur in two years.

Again, sketch the time paths of the model's variables.

(¢}  Finally, use a third phase diagram to analyze the effect of an
anticipated temporary increase in the price of the firm's output
lasting for three years. That is, investors believe that the price will
rise immediately, stay high for three years, and then fall back to its

original value. Sketch the paths of the variables.
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(a) The phase diagram and time paths of the variables for a
surprise permanent increase in the price of the firm's output are
shown in figure E1.1. The increased output price immediately
raises the marginal value of additional capital A, so the system
jumps from point A to point B. Since the price of raw capital goods
has not changed, the firm expands investment until higher
adjustment costs raise the price of installed capital to the new value
of A. With higher investment, the capital stock rises asymptotically

toward its new steady state level at C.

(b} The phase diagram and graphs of the dynamic variables are
shown in figure E1.2 below. These results differ quite a bit from
those of the previous experiment. When news of the price increase
first arrives, A jumps part way toward its new steady state value. It
does not jump all the way, however, because the higher price wiil
not be obtained for several years. In the period between
announcement and implementation of the new price, A rises
exponentially toward the new stable path, arriving there just as the
price increase occurs. Investment follows the path of A, jumping
upward at the announcement and then rising steadily toward its
new steady state value. The capital stock is drawn upward by the
higher level of investment, reaching a peak rate of growth at the
instant of implementation. After that it continues to grow, but at a
slower rate. Over time, it asymptotically approaches the steady

state.

(c) This experiment is the most interesting of the three. The

phase diagram and variable paths are shown below in figure E1.3,
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Figure E1.1: A Surprise Increase in the Price of Output
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Figure E1.2: An Announced Increase in the Price of Qutput
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Figure E1.3: A Temporary Increase in the Price of Output
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In this case, a temporary increase in the output price leads to an
upward jump in A from point A to B at the instant the price rises.
This occurs because the increased output price raises the returns

to capital, at least for a while.

After the initial jump, the system moves downward and to the
right under the control of the equations of motion holding at the
higher price. The intuitive reason for this is quite interesting.
When A rises, so does investment. Higher investment leads to
growth in the capital stock, so the system moves toward the right.
At the same time, the remaining period of higher prices becomes
steadily shorter. This causes A to fall back toward its initial value,
pushing the system downward. As A falls, however, so does
investment. Eventually, a point is reached where investment just
covers depreciation of the higher capital stock. On the phase
diagram, that point occurs where the dynamic path crosses the

K’=0 locus, as indicated by point C in the figure.

At point C, the system is moving straight downward.
Investment is just enough to maintain the captial stock, but A is still
declining. Past C, the model begins moving downward and to the
left. The value of A has fallen so much that investment is no longer
enough to offset depreciation and the capital stock begins to erode.
This continues until the price finally returns to its original value. At
that time the system will have reached point D. At D, A and
investment are back to their original values, but the capital stock is
somewhat higher than its steady state value. Thus, K continues to

erode, gradually returning to its initial value.

An interesting feature of this experirrient is that the dynamic
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path crosses the K'=0 locus. This demonstrates that the loci do not
necessarily confine the model to a particular quadrant. However, if
the system does cross one of the loci, the derivative of the corre-
sponding variable must be zero (by definition of the loci). In this
experiment, for example, the derivative of the capital stock at point
B must be zero; the dynamic path can only cross the K'=0 locus
while moving vertically. This feature also allows an interesting fact
to be deduced about the solution: point D cannot lie to the left of
the initial steady state. If it did, the system would have to cross the
K’=0 locus a second time. Since that can only occur while the path
is moving vertically, A would have to be rising. However, A falls
continuously after its initial jump, so the path cannot rise and
cannot recross the K'=0 locus. It must, therefore, intersect the

original stable path at or to the right of the original steady state.
E2. The Effects of a Rise in the Price of Capital Goods

A second interesting experiment that can be explored with
the model of section (2) is a change in the price of capital goods.

Again, the model's key equations are repeated below for

convenience:
1 A
I= Wb (—7‘ PJ . (2.34)
A= (r+8)7\.~B(P)(1-Td) , (2.35)
P
K=t sk (2.36)

2wh(1-T9 ~ 2we

(a} Using a phase diagram, explain the consequences of an unex-
pected immediate permanent fall in the price of capital goods.

Sketch the paths of A, investment and the capital stock over time.
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(b) Now use a second phase diagram to illustrate what happens if
the fall in Py is anticipated several years in advance. Are the results

what you expected? Discuss.

o ok e 3ok Ak ke Answer Ao A ok

(a) A fall in the price of capital goods shifts the K'=0 locus to the
right, as shown in figure E2.1. The A’=0 locus is completely
unaffected, however, so A is already at its new steady state value and
does not jump when the price change occurs. From equation
(2.34), the lower price of capital leads to a higher level of
investment, even with no change in A. This, in turn, leads to
capital accumulation, so the system moves gradually from the initial

steady state at A toward the new steady state at B.

{b) Surprisingly, knowing about the price decline in advance
does not change the behaviour of firms at all. As shown in figure
E2.2 below, the model remains at the initial steady state until the
change actually occurs. After that, it proceeds in precisely the

manner described in part {a).

At first this result appears peculiar. Intuitively, it seems as
though the firm should be able to gain by postponing investment
just before the price decline and doing more investment later. The
key, however, is adjustment costs. Recall that A is unaffected by the
shock.
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Figure E2.1: A Surprise Drop in the Price of Capital Goods
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Figure E2.2: An Announced Drop in the Price of Capital Goods
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Since A is the marginal benefit of additional capital goods,
investment after the price change will occur until adjustment costs
rise just enough to make the cost of installed capital equal to A. At
that point, it would not be optimal for the firm to do more investing
because the marginal cost of installed capital would be greater than
its benefit. Thus, the firm would not want to move marginal units
of investment from the instant before the price drop to the instant
after it because those units will be just as expensive when

adjustment costs are taken into account.

This point is illustrated in figure E2.3 which shows the
marginal cost and marginal benefit of investment before and after
the change in the price of capital goods. The marginal cost curve
does, indeed, shift down. However, switching investment from
before the change to after it entails saving an amount shown by box
A, while spending the amount shown by box B. Clearly, this is a net
loss to the firm, so investment will not be shifted across time.
Thus, although the purchase price of new capital goods has fallen,
the marginal cost of investment faced by the firm at its new
optimum is unchanged. This means that it is not profitable for the

firm to postpone investment.
E3. Adding More Taxes to the Investment Model

Now consider an economy in which there are two financial
assets: government bonds and equities issued by corporations.
Bonds pay a fixed rate of return and there is no inflation. The
government levies three taxes: a dividend tax, a tax on interest
payments, and a tax on capital gains. The earnings (short run

profits) of firms are a function of wages, prices and the capital
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Figure E2.3: The Marginal Cost and Benefit of Investment
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stock, but not a function of investment. On the other hand,
investment costs depend on wages, prices and investment, but not
on the capital stock. Firms take wages, prices, tax rates and the
interest rate to be exogenous. Thus, this economy is similar to that

of section {2}, except that there are two additional taxes.

{a} Write down the arbitrage equation for this economy and
explain what it means. Using the arbitrage equation, solve for an
explicit expression for the value of the firm in terms of the
earnings and investment cost functions and the model's exogenous
variables. What transversality equation did you use? How should it

be interpreted?

(b)  Assuming the firm chooses investment to maximize its stock
market value, write down the investment problem, form the

Hamiltonian, and find the first order conditions.

{c) Suppose the earnings and investment cost functions have the
form shown below, where B is function of wages and prices, K is the
capital stock, Py is the price of new capital goods, I is the level of

investment, and 0 is a parameter:

E = B(PK , (E3.1)
P, 12

=K (E3.2)
26

Using this information and the results obtained in part (b), find the
first order conditions for this particular problem. Then find an ex-
pression for investment in terms of other variables. Finally, using
the investment equation to eliminate investment from the other

first order equations, show that the model's equations of motion are
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the following:

, 1-T! 1-Td
N = (r e + 8 A - BRI (E3.3)
k=2 (1—?3) 5K . . (E3.4)

L2222 2204 Answer Ak ko

(a)  Arbitrage will equate after-tax returns on bonds and equity, so

in equilibrium the following expression must hold:

(1-TYrv = D(1-TY + V{1-T®) ; {E3.5)

where r is the interest rate on bonds, V is the value of the firm, D is
the dividend paid by the firm, and the T's are the three tax rates.
The left side of (E3.5) is the after-tax return on V dollars of bonds,

while the right side is the after-tax return on V dollars of equity.

The arbitrage condition in (E3.5} is a differential equation de-
scribing the evolution of the value of the firm. To find an explicit

expression for the firm's value, start by rearranging (E3.5) to obtain:

i .
ATl LT (E3.6)

This form suggests the equation can be solved using the integrating

factor shown below:

eROY (E3.7)
where R(a,b) is defined by:
b
_ 1-Ti(v)
Ra,b) = J rv) {oreqy 4V - (E3.8)

Expression (E3.8) takes the form of an integral because the two tax

rates (and the interest rate) are not necessarily constant over time.
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If they were, (E3.8) would simplify to:

1-Ti
1-T¢

R@ab) =r {b-a} ., (E3.9)

which is similar in form to the integrating factor used in section

(2).

Multiplying (E3.6) by (E3.7} converts the left side of (E3.6)
into an exact differential, so it is easy to show that the following is
true:

1-T

(V’ - 1"1‘(: rV)e‘R(Ort) = (EB. 10)

d (Ve-R(O,t))
dt ;

Thus, after multiplying by the integrating factor, (E3.6) can be inte-
grated over [t,~) to give:
il_l:o V{s)e'RO.S) . y(ge-ROY = _tj'il__lTTg DeROslds . (E3.11)
At this point, we assume that the limit in the left-most term
of (E3.11) is zero. This is known as a transversality condition, and
it will be true as long as the value of the firm grows more slowly
than the tax-adjusted interest rate as time tends toward infinity.
The best way to interpret it is to look at what behaviour it rules out.
If the value of the firm were to grow more rapidly than the interest
rate, for the arbitrage condition {E3.5) to hold, the firm would have
to pay negative dividends; otherwise, no one would be willing to
hold bonds. Thus, the transversality condition rules out firms
whose value grows more rapidly than the tax-adjusted interest rate
forever even though they pay negative dividends. In recognition of
the Ponzi swindle, the transversality condition is often said to

prohibit infinitely-lived Ponzi schemes.
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After applying the transversality condition and rearranging
slightly, we obtain an explicit equation for the value of the firm at
any time t: |

o0

1-Td
= -Rit,s}

Vit) = tjl_TC DeRitslds . (E3.12)

Note that use has been made of the following property:

e'R(O'S) b4 eR(Oyt) = e_R(tvS) y (E3.13)

which can be shown to be true from the definition of R(a,b).

(b} From (E3.12} and the capital accumulation constraint, the
firm's problem at time t can be stated as follows:

max tj :}f DeRltslgs | (E3.14)

subject to K’ = I-8K . (E3.15)

The appropriate Hamiltonian for this problem is:

1-Td

=171 DeRts) ¢ A(I-8K) . (E3.18)

H

The first-order conditions are obtained by differentiation:

-71d
%_Pii_;%?_ (i_%) eRLS LA =0 | (E3.17)
71d
%1% = %1% (‘i".‘%) eRIts)_§p = A" (E3.18)
aH ,
Sn =K =K (£3.19)

It is convenient to introduce the following transformation of A to

eliminate the discount factors:
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Als) = A(s)eRit.s) (E3.20)

Differentiating this with respect to future time s gives:

i
A(s) = (x'(s) - r(s)%%%x(s) )e'Rﬁ-S) ) (E3.21)

Inserting (E3.20) and (E3.21) into (E3.17) and (E3.18) gives:

aD 1-Td

Fit ("1"_‘,}‘5) +A=0, (£3.22)
oD 1-1d .
R G - = A +ryEh . (£3.23)

Equations (E3.19)}, (E3.22) and (E3.23) are the model's first-order

conditions.

(c} Equations {E3.1) and (E3.2) can be used to obtain the
dividends function for the firm. Since dividends are the difference
between earnings and investment, the following must be true:

D=E-C . (£3.24)

Inserting (E3.1} and (E3.2) gives:
D = B(PIK Pil® (E3.25)
= [(P)K - 26 .
Equation (E3.25) can be differentiated to provide the differentials

needed in (E3.22) and (E3.23):

oD _ Bl
aI = e N (E3.26)
g—% =BP) . (E3.27)

Inserting these into (E3.22), {E3.23) and (E3.19), and rearranging

a bit, produces the particular first-order conditions for this
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problem:

A= o ,(1-1‘0’ , (E3.28)

, 1-Tt 1-Td
M={rige+3 M- BP)< . (E3.29)
K =1-8K . {E3.30)

Equation (E3.28) can be solved for investment as a function of K

and A:
A 1-TC
I= P, (—l—j,l:a) . (E3.31)

Using this to eliminate investment from (E3.30) produces the

system's equations of motion:

1-Ti 1-Td
A={r e+ &) - ﬁ(P)f—'TC* , (E3.32)
SECIRE (N
K = P, ('l—;[q) - 8K ; (E3.33)

where equation (E3.32) is just (E3.29) repeated for clarity.
E4. The Effects of a Capital Gains Tax

This exercise explores the qualitative effects of a change in
the capital gains tax introduced in exercise (E3). Use the equations
of motion from part (c) of that exercise to answer the following

questions.

(a) Construct a phase diagram for the model and label the
important features of it clearly. Be sure that each locus has the

correct slope.

(b) Draw another phase diagram and use it to analyze the effects

131



of an unexpected permanent decrease in the capital gains tax.
Show the initial and final steady states and the transition path.
Sketch the paths of the multiplier (the costate variable),
investment and the capital stock over time. Identify any important

characteristics of the path and interpret it briefly.

{c) Draw a third phase diagram and use it to illustrate the effects
of a permanent decrease in the capital gains tax announced several
years in advance. Sketch the paths of important variables and
interpret the solution. Does anticipation of the shock lead to any

interesting or perverse effects?

{d) Finally, suppose the government surprises investors with a
temporary drop in the capital gains tax. The tax is lowered
immediately, kept low for several years, and then returned to its
original level. Investors understand the new policy, and realize that
the tax change is temporary. Analyze this shock using an
appropriate phase diagram.

e ke ok ko ok K ok Answer e e o ok ok

{a) The phase diagram for the model is shown in figure E4.1. It
is very similar to the phase diagram derived in section (2), except
that the loci are located in somewhat different positions due to the

additional taxes.

{b) The phase diagram and intertemporal paths of capital, the
multiplier (A) and investment are shown in figure E4.2. The most
interesting consequence of the shock is that A falls while the
capital stock rises. The latter comes about because even though A
falls, the implicit cost of investment drops more because of the

reduction in the capital gains tax. In terms of equation (E3.31), the
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Figure E4.1: A Model with Additional Taxes
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Figure E4.2: An Unexpected Decline in the Capital Gains Tax
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drop in T¢ pushes investment up more than the reduction in A

lowers it.

{c) The diagrams for this section are shown in figure E4.3. An
interesting and important feature of the result is the decline in the
capital stock which occurs after the policy is announced but before
it is implemented. The intuition behind this result is exactly the
same as in the case of an announced dividend tax: after the policy
has been implemented, the tax rate on capital gains relative to
dividends is lower, so firms find it optimal to shift shareholder
returns toward capital gains and away from dividends. This is
accomplished by paying higher dividends before the policy is
implemented, which drives down the capital stock, allowing it to
grow rapidly after implementation. This could be described as a
perverse effect because the policy causes a short term deterioration
in K even though it increases K in the long run. Thus, anticipation

causes the short and long term effects to have opposite sign.
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Figure E4.3: An Announced Decline in the Capital Gains Tax
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(d) The diagrams are shown in figure E4.4. When the tax change
is only temporary, there is no permanent effect on the capital
stock. However, in the short run there will be a burst of growth in
K until the tax is returned to its initial level. At that point, the
capital stock begins to decline back to its original value. The
intuition behind this is another variation on the theme discussed in
part (c): the temporary drop in the capital gains tax makes capital
gains (rather than dividends) a more effective way of transferring
earnings to the stockholders. Thus, when the tax is low, firms do a
lot of investment, raising the capital stock and producing capital
gains for the stockholders. Once the tax is removed, investment
returns to its original level and the capital stock begins to

deteriorate back to the initial steady state.
E5. Diminishing Returns

Now consider an economy similar to that of exercise (3) but
with diminishing returns to capital in the earnings function. In
particular, suppose everything is the same except that earnings are
given by:

E = B(PIn(K) ; (E5.1)

where f, P and K have the same interpretation as before. Since K
has been replaced by its natural logarithm, the second derivative of
the earnings function will be negative. This means that marginal
earnings decrease as the capital stock increases, so from the firm's

point of view, there are diminishing returns to capital.
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Figure E4.4: A Temporary Decline in the Capital Gains Tax
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{a} Starting from the general results obtained in part (b) of
exercise (E3), derive the firm's first order conditions. From those,
solve for investment as a function of other variables. Finally, solve

for the model's equations of motion.

(b}  Construct a phase diagram for the model and discuss how it

compares to the one obtained in part (a) of exercise (£4).

(c} Using a phase diagram, analyze the effects of an unexpected
permanent increase in the tax on interest payments. Show the
initial and final steady states, and also the transition path. Sketch
the paths of the muiltiplier, investment and the capital stock over

time.

(d) Now draw a third phase diagram and use it to illustrate the
effects of a permanent increase in the interest tax announced
several years in advance. Sketch the paths of important variables

and interpret the solution.

e e ke e o Answer LR T L X L

(a} In part (b) of exercise (E3), the general first order conditions
for optimization in investment models of this type were shown to

be the following:

I-8K = K’ , (E£3.19)
1-Td
%113_ (Tope) +4 =0, (E3.22)
9D 1-1d , 1-T!
3K o) - = M +rogh . (E3.23)

To obtain the specific first order equations for this model, the next

step is to construct the dividend function. "As in part (c) of exercise
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(E3), dividends are earnings less investment costs:

D=E-C . (E5.2)

Applying equations (E5.1) and (E3.2) gives the following:
P, I?

D = B(P) In(K) - - . (E5.3)

Differentiating (E5.3) provides the terms needed in equations

{E3.22) and (E3.23):

P,
%IT) =- —ék— (E5.4)
g% -pe) (E5.5)

Of these, only the second equation has changed from exercise (E3).
Since 0D/dl has not changed, it is straightforward to show that the
investment function and capital accumulation equation will be

identical to those found in part {c) of (E3):

A8 /1-T¢
=§£(ﬁ3) (E3.31)
., _ A8 (1-TC
K =5 (1-Td)' 5K . (E3.33)

However, the difference in dD/9JK changes the remaining first order
condition considerably. Inserting (E5.5) into (E3.23) produces the

following:

_ri _rd
L s B%G-TC) . (E5.6)

AM=(r

Thus expression (E3.31) gives the investment function for this

model, while (E3.33) and {E5.6) give its equations of motion.
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(b) The phase diagram for this model is shown in figure E5.1. It
differs from figure E4.1 in two respects: both the A’=0 locus and the
stable path are now downward sléping. These changes are due to
the existence of diminishing returns in the earnings function. The
1’=0 locus becomes hyperbolic because of the 1/K term in equation
(E5.6). This reflects the fact that marginal earnings decrease as

the capital stock becomes larger.

When the 1'=0 locus changes, so does the stable path. To see
why it must, consider where the model would go from an arbitrary
point located horizontally to the left of the steady state. Such a
point is no longer on the A’=0 locus and, in fact, is in a region
where A’ is negative. This means that A will begin decreasing as the
system moves to the right. Moreover, an inspection of the phase
diagram shows that the model will continue moving downward
forever. Thus, if the system were to start at a point directly to the
left of the steady state, A would quickly fall below its steady state
value and remain below it forever. A similar analysis applies for
points to the right of the steady state, except that those points lead
to perpetually increasing values of A. The stable path, therefore, is
no longer horizontal. In fact, it must be downward sloping, and will
lie between the A’=0 locus and a horizontal line through the steady
state. Only from points along such a path could the model
eventually reach the steady state. The path will be unique under

the conditions discussed in section (3.3).

141



Figure E5.1: A Model with Diminishing Returns
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(c})  An increase in the tax on interest payments shifts the A’=0
locus to the right but leaves the K'=0 locus unchanged. The steady
state, therefore, moves upward and to the right, as shown by point
C in figure E5.2. Since the tax change is permanent and occurs
immediately, the model jumps instantly from the original steady
state, point A, to point B on the new stable path. Then, as time
passes, the system moves downward and to the right along the
stable path from B to C. This produces the time paths of A, I and K

that are shown in figure E5.2.

At first, this result may seem surprising. Why should a tax
increase lead to a rise in the capital stock? The reason can best be
understood from equation (E3.5), the arbitrage condition for the
model. When the tax on interest payments rises, the after-tax
return on bonds falls. The tax does not apply to dividends or
capital gains, however, so the return on equity is unchanged. Thus,
the initial effect of the policy is to make the after-tax return on
equity higher than the return on bonds. This produces a windfall
gain to the holders of equity, which shows up in figure E3.5 as a
Jjump from A to B. The increase in A produces a subsequent rise in
investment, so the capital stock begins to grow and the model

moves toward the new steady state at C.

(d} When the tax increase is announced in advance, the system
follows the path shown in figure E5.3. At the moment of the
announcement, the model jumps from A to B because of the
windfall benefit to holders of equity. It does not, however, move all
the way to the new stable path because the actual tax change will

not occur for some time.
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Figure E5.2: A Surprise Increase in the Tax on Interest
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Figure E5.3: An Announced Increase in the Tax on Interest
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From point B the model evolves according to the original equations
of motion (since the tax has not yet changed). It reaches point C at
the exact instant the tax change is implemented. After that, the
model moves along the new stable path toward the steady state at
D. The paths of the model's variables over time are shown at the

bottom of the figure.
E6. The Stock Market and the Costate Variable

Intertemporal investment models, such as the ones discussed
in this chapter, often generate equations giving the optimal value of
investment as a function of the capital stock, a costate variable {(or
multiplier), and variables that the firm takes as given. In the model
of section (2), for example, equation (2.34) gives investment as a

function of K, A and a number of prices:

1 A
I= P { -Td - P . (2.34)
If . were observable, equation (2.34) and others like it could be
estimated econometrically. This would allow values to be obtained
for some of the parameters in the model, such as 6 in the

expression above. More importantly, however, it would also allow

the statistical performance of the model to be assessed.

In what has become a very influential paper, Hayashi (1982)
presented conditions under which the marginal value of additional
capital (A, in the notation of this chapter) would be exactly equal to
the average value of the capital stock. This finding allowed
observable stock market data to be used to construct the unknown

variable A, which in turn allowed investment equations such as
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{2.34) to be estimated. A number of studies along those lines were
conducted, a good example of which is Summers (1981). Because
of its empirical importance, the remainder of this exercise will be

devoted to deriving the Hayashi result.

So far in this chapter, we have always assumed that dividends
were additively separable into an earnings function, which was
independent of investment, and an investment cost function, which
was independent of the capital stock. Now we will relax that
assumption and solve the investment problem under very general
conditons. In particular, assume that dividends are a function of
capital, investment, and a vector of short-run variables, P, that the
firm takes as given:

D = DK.LP) . (E6.1)

A single restriction will be imposed on D: it must be homogeneous
of degree one in capital and investment. For convenience, assume

the interest rate is constant and there are no taxes.

(a)  Write down the firm's investment problem and derive the
first-order conditions that must hold along the optimal investment

path.

(b)  Differentiate the following function with respect to future
time s, where A, as usual, is the current value multiplier associated

with the capital accumulation constraint:

F(s) = AMs)Ke TlsV (E6.2)

Use the conditions found in part {a) to eliminate the terms in A, A

and K'. Then, apply Euler's theorem to simplify the result.
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(c) Integrate the equation from part (b) over the interval [t,o)

and discuss the result.

o s ok ok e ok o o Answer e sk o s o 2 ks

(a) Since there are no taxes, the arbitrage condition used in
section (2) applies. This means that the firm's value function can
be obtained by inserting {E6.1) into (2.9) to give:

oS

V({t) = [ DK.LP)e™s0 gs . (E6.3)
t

Thus, the firm's investment problem is to choose I to maximize

{(E6.3) subject to the accumulation equation below:

K=I1-8K. (E6.4)

The Hamiltonian for this problem is particularly simple:

H = D(K,LPletls-t 4 A(I-8K) . (E6.5)

Taking first-order conditions and converting the multiplier to its

current value equivalent produces the following:

Lir=o0, (E6.6)
%% -O0A =-A + 1A, (E6.7)
[-8K=K . (E6.8)

Equations {E6.6) through (E6.8) must hold along the optimal path

of investment.

{b) Differentiating F{ ) with respect to s is straightforward and

produces the following expression:
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g—g = (VK + MK’ - fAK JeTlst) | (£6.9)

Using (E6.7) to eliminate A’, (E6.6) to eliminate A, and (E6.8) to
eliminate K’ gives, after collecting terms:

dF ( dD

g = [5RK+ II )e-r(s-t) . (E6.10)

Finally, since D(} is homogeneous of degree one, Euler's theorem
states that the following holds:

D dD

BKK + BII = DK, LP) . (E6.11)
Thus, (E6.10) can be simplified to:

%g = - D(K,1.pjetis-tl (E6.12)

(c) Since F() is known, integrating (E6.12} over an interval [a,b]
is straightforward and produces:

b
Ab)K(b)e Tt - A(a)K(a)eT@-D) = - j D(K,IPle"sUds . (E6.13)
a

Choosing the limits of integration to be t and «, and making use of
the usual transversality condition on the behaviour of A as time

tends toward infinity gives:

MUK = j (K,1,PJetlstldgs | (E6.14)
t

The right side of this equation is exactly the same as the right side

of equation (E6.3), so the following must be true:

AOK() = V() . {E6.15)

Thus, A{t) can be calculated using the formula below:
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Ay = f\é—% . (E6.16)

Equation (E6.16) shows that under the assumptions made
above, the marginal value of an additional unit of capital, 2, is
exactly equal to the average value of a unit of capital, V/K. Thus, 2
can be calculated by simply dividing the firm's stock market value
by its capital stock. Assuming that the capital stock can be observed
or computed, (E6.16) provides a way of obtaining the multiplier, A.
However, this approach depends heavily on the assumption that the
dividend function is homogeneous of degree one in capital and
investment. If it is not, the average and marginal values of the

capital stock will differ.
E7. Constructing Finite Difference Formulae

Difference formulae accurate to high orders can be
constructed by using combinations of Taylor series expansions at
several adjacent points. For example, a first-order difference
accurate to O(h?) can be constructed by subtracting the expansion
for f(t-h) from that for f{t+h). This is known as a "central"
difference. Using more expansions, it is possible to construct

formulae accurate to even higher orders.

It is also possible to construct difference approximations to
higher-order derivatives. This is done by applying the method used
for first-order differences recursively. For example, an
approximation for a second-order derivative could be constructed
as follows. First, difference formula for f’( } in terms of f{ ) would
be built. Then, inserting an appropriate difference formulae for f

would produce the desired difference formula.
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Finally, difference formulae can also be constructed for
unevenly spaced grids in which adjacent points are separated by
varying distances. This is done in exactly the same manner as for
uniform grids, but with the appropriate distances inserted
wherever h appears. As discussed in the text, uneven grid spacing
can be a very powerful tool for reducing truncation error. However,
it does introduce an additional source of truncation error at points
where there are sharp changes in grid spacing. This point will be

discussed in detail in part (c).

{a) Construct a first-order central difference formula. How does
its accuracy compare with the forward difference presented in the

text?

(b}  Using the results of part (a), construct a second-order central

difference formula. What is its order of accuracy?

(c) Construct the analog of a first-order centered difference for

an unevenly spaced grid. Discuss its order of accuracy.

EEEE 222 2 Answer e 3k ok o o e R X

(a)  As suggested at the beginning of the exercise, a first-order
central difference is constructed from Taylor series expansions
around time t for times t+h and t-h. To fourth order, these

expansions are the following:

g S
flt+h) = ft) + h'(t) + b ;!(t) + 9‘—%}1&) + Oh?) , (E7.1)

D By
f(t-h) = fit) - hf' ) + b ; © E—%,—(-t—) + 0(h?) . (E7.2)

Subtracting produces:
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flt+h) - f(t-h) =

Qen Sgre
(f) + he(e) + > ;(t) £ 2 ;! B, om)-

27 Y24
(f{t) - hf'(t) + b ;{t) b g! (®) + 0hY) . (E7.3)

Notice that the even-order terms all cancel out. Rearranging (E7.3)
and dividing through by 2h produces the central difference formula
below:

flt+h})-f(t-h)

() = -—-—2—1{——— +0(h?) . (E7.4)

This expression is accurate to O(h2), an order more accurate than

the simple forward and backward differences presented in the text.

{b) To construct a second-order central difference, start by

expanding f'(t+a) and f(t-a) around f(t):

o 3grr
Plt+a) = F(O) + af’(t) + = fm ©, a g, W, 0@y . ®7.5

Dy Sgrer
Plt-a) = F() - af'(t) + = g!(t) .2 g! ©, 6@ . (E7.6)

Subtracting these, dividing through by 2a, and rearranging

produces an expression analogous to (E7.4):

f{t+a)-f'(t-a)

o +0(a?) . (E7.7)

) =

Substituting (E7.4) for the derivatives produces:

oo 1 f(t¥2a)-f(0) f(1)-f(t-2a)
) =oq(" 22 -~ 2a )

+0(a@?) . (E7.8)

Since all of the terms at t+a and t-a have cancelled out, we can

define a new step size, h, with the property that h=2a. This allows
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(E7.8} to be rewritten as:

+ 0O(h2/4) . (E7.9)

1) = f(t+h)—2}§(2t)+f(t-h)
For the purposes of error analysis, the factor of 1/4 in the error

term is ignored, so (E7.9) is accurate to O(h2).

(c) A first-order central difference for a non-uniform grid is con-
structed almost exactly as shown in part (a), except that care must
be taken about the spacing of the points. The first step is to
construct Taylor series expansions around t for t+a and t-b. To

fourth order, these expansions are the following:

Qv Sprr
flt+a) = flt) + af(t) + %y—,@- +2 g! O, 0wy . (€7.10)

2er By
fit-b) = fit) - bf{t) + b ;(t) b g! () + Ofb%) . (E7.11)

Subtracting these produces:
f{t+a)-f(t-b) =

D Y2
(0 + art) + 200 4 2L, o)

Dgn S,
{ f{t} - bF(t) + ?__:‘fz_!it_) - i%(ﬁl +0bY) . (E7.12)

In this case, the even-order terms do not cancel out. Rearranging

(E7.12) and dividing through by a+b produces the folowing:

3
(t+a;)+tf)(t B _ e+ Labirw + aa:g),- . . (E7.13)

This suggests using the difference formula below:

f(t+a)-f(t-b)

2+b (E7.14)

fit) =
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which will have an error term given by the following:
%M¢Mﬂﬂ+%£%g?’hhu.. (E7.15)
When a and b are close in magnitude, the even-order terms in
{(£7.15) will be negligible. In that case, the error will be essentially
O(a?) (or O(b?) for that matter, since a=b), which is the same as for
a uniform grid. On an uneven grid, in regions where the spacing
between points changes suddenly, a and b may differ substantially.
When that occurs, the first term in (E7.15) will be significant, so
the error will be more like O(a). This effect can be minimized by
avoiding sharp jumps in grid spacing, and by locating any such
changes in the regions where f’(t) is small. By constructing more
elaborate difference formulae, the term in {a-b) can be eliminated
entirely. For more discussion of difference formulae refer to Fox

(1962).
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E8. Solving the Dividend Tax Experiment Analytically

For most experiments with most models, it is difficult or
impossible to obtain an analytic solution to the model's equations of
motion. The eigenvector transformation described in section (3.3)
can be used when the model's coefficients are constant, such as
near the steady state, but no general method exists for solving
problems with time-varying coefficients. However, it is sometimes
possible to obtain analytic solutions to particular models for
particular experiments. The investment models in this chapter, for
example, can be solved analytically for the case of an announced

increase in the dividend tax.

Consider sector A's investment problem from section (6) of

the text. Its equations of motion were the following:
Ay = (43, - B(1-TY | (6.11)

K, =1, - 8K, (6.12)

and investment was given by:

A
1 a___p). (6.14)

'a = owe,\ (1-TO)(1-19) T3

Ordinarily, a model's equations of motion are mutually
interdependent and must be solved simultaneously. In the problem
above, however, the capital stock does not appear in equation
(6.11). As a result, (6.11) can be integrated in isolation to obtain a
function giving la;(t) in terms of exogenous variables. This function
can then be inserted into (6.14) to obtain investment. Investment,

in turn, can be used in (6.12) to find the capital stock. Thus, for
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this model subjected to a dividend tax shock, it is possible to find

an analytic solution.

(a} Assuming that p and W are constant, use a suitable integrating
factor to solve (6.11) for a closed-form expression for A,(t) in terms

of the other variables.

{b) Now suppose the government announces that the dividend
tax will rise from Tci to ’I‘g at date 1 in the future. Using this
information, evaluate the integral obtained in part (a). It will help

to recall the following property of integrals:

b T b

[ fogdx = [ fegdx + [ feddx . (E8.1)

a a T
(c} Insert the results of part (b) into {6.14) to obtain an
expression for investment in terms of the exogenous variables. Also,
derive a function AL (t) giving the change in investment at each
point in time from its value before the policy change was

announced. Assume that the model was initially at the steady state.

(d) Using a second integrating factor, solve {6.12) for the capital

stock as a function of I, and the exogenous variables.

(e} Combine the results of parts (¢)] and (d) to obtain an

expression for K, (t) when t<t.
EE T RS 2 Answer ESE ST 2238

(a) By collecting terms in A, on the left side, equation (6.11) can
be rearranged as shown below:
}LI

a - [+, = -p1-TY . (E8.2)

156



This suggests the integrating factor below:

e-(r+6)s . (E8.3)

Multiplying both sides of (E8.2) by (E8.3) gives:

(A, - +3)A, Jerlr+ds = _B(1-Td)e-(r+d)s (E8.4)

If both sides of (E8.4) are multiplied by dt, the left side becomes an

exact differential, so the entire equation can be rewritten as shown:

d(;\'ae‘(r‘rG)S)
o dt =

B(1-Tdje-(r+d)s (E8.5)

Integrating both sides from t to « and assuming that A, grows more

slowly than r+8 as time tends to infinity, produces the following:

a0 = [B(1-THe-r+dlls-tgs (E8.6)
t

Equation (E8.6) is the desired closed-form solution for A,(t).

(b) To evaluate (E8.6) for an announced dividend tax change

occurring at time 1, start by splitting the integral into two parts:

T =
A lt) = jﬁ(LTd)e'(”&(S’“ds + jB(l—Td)e’(”a"S'”ds . (E8.7)
t T

This expression is valid when t<t (the case of t>1 will be covered
below). In each integral, f and T9 are constant, although T9 differs
between the two integrals, so (E8.7) can be rewritten as shown

below:

T . o0
Aalt) = B(L-TY) [ e r+disUds + (1-T) [etrdisUgs ; (E8.8)
t 1T
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where the two values of T9 have now been inserted. Evaluating
(£8.8) is straightforward and produces the following expression:

B(1 —Tcli) {1 _e-(r+d)(t-t)) B(1 _Tg)e-(r+8)(’c-t)

Ralt) = - + — . (E8.9)

Finally, (E8.9) can be simplified to give:

d.,.d
p1-ty(  TiT2

A(t) = - 1+ e rdlle-t) | (E8.10)
a r+d 1_T‘i

This gives A,(t} when t<t.

Obtaining the value of A (t) when t>1 is somewhat easier
because (E8.6) can be integrated directly. Thus, for t>1 the
following must hold:

B(1-TY)

halt) = ————. (E8.11)

Together, equations (E8.10) and (E8.11) give the value of A, for any

point in time.

(¢) Finding an expression for investment is a straightforward
matter of inserting (E8.10) and (E8.11) into (6.14). When t<1, this
produces:

[ 7915
1 B )L1+ 5 e-{r+djlr-t) -Pg| . (E8.12)

I, =
a ZWGaL(r+8)(1-TS 11

In contrast, when t>t investment is given by:
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L= v‘lrea( (r+a)?1-'r5) “Py) . (8.13)
Notice that (E8.13) does not depénd on the dividend tax, and is
precisely the same as the expression giving investment before the
tax change was announced. This is true because the dividend tax
falls purely on profits, so once it has been implemented firms
return to their original investment behaviour. Thus, the difference
between investment after implementation of the tax and

investment before the tax change was announced is zero.

In the period between the announcement of the change and
its implementation, investment does differ from its pre-

announcement value. A function giving this difference is:

AL = (DT : (E8.14)

where the pre-announcement (and post-implementation) value of
investment has been written as Izs. As noted above, IZS is given by
{E8.13), so comparing {E8.12) and (E8.13) shows that the following
must be true:

19T,

1 ( B -{r+6}{z-t) E
— . . 5
Al 2W94(r+6)(1—[5) I‘T? € (E8.15)

(d) Solving (6.12) requires the same sequence of steps used to

solve (6.11) in part (a). First, rearrange the equation as shown:

K, +8K, =1, . (E8.16)

Now, introduce the integrating factor below:

eds : (E8.17)
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and multiply both sides of (E8.16) by (E8.17). As before, this
converts the left side into an exact differential, so the equation can
be written:

d(K,e%)

2=, . (E8.18)

Integrating (E8.18) from 0 to t (since K(0) is known) and
rearranging gives the following:

t
K, () = K(0)ed + J 1,edlstds . (E8.19)

(e) The remaining step is to eliminate I, from (E8.19) using the
results of part (c). Start by noting that from the definition of Al in
(E8.14), the following is true:

L(t) = 5% + AL {t) . (E8.20)

Inserting (E8.20)} into (E8.19) produces:
t

t
K, () = K(0)edt + J I; efstds + J ALeSstds . (E8.21)

If the model was initially at the steady state, the sum of the
first two terms on the right gives the original steady state capital
stock. To see this, notice that the second term on the right is the
net amount of capital constructed by investing at rate IZS over the
period [0,t]. The first term on the right is the amount of capital left
after depreciation over [0,t], so the sum of the first two terms is the
amount of capital that would exist at time t given an initial stock
K(0) and a rate of investment IZS. Since the model was initially at

the steady state, IsaS is exactly the investment needed to perpetuate
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the original capital stock, so the first two terms must add to K(0).
Thus, (E8.21) can be rewritten as shown:

t
K, (8 = K(0) + J ALedlstgs | (E8.22)

Inserting Al, from expression (E8.15) gives:

¢ B (T? —Tg) e-(r+d)(z-s) eB(s—t)

K,(t) = K(©O) + o[ 7 ds . (E8.23)
2W6,(r+8)(1-TS)(1-T7)

Finally, evaluating the integral in (E8.23) gives the following

expression for K, (t):

ﬁ(TC% -Tg) (e-(r+d)z-t) _ e-r+d)t-8t)

K,(t) = K(0) + (£8.24)

AW, (r+8)(L-TS)(1-T0)(r+25)

Equation (E8.24) can be used to find the capital stock in year
10 for the dividend tax experiment discussed in section (9).
Inserting the parameters given in appendix Al shows that an
announced increase in T9 from 10 per cent to 20 per cent to occur
in year 10 causes K(10} to fall from 1 to 0.9113, the value

mentioned in the text.
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Al. The Trial Data Set

The data set used in section (9} is shown in the tables below.

It was replicated for each grid point.

Table Al: Variables in the Trial Data Set

Symbol Definition Value
K, Capital stock A, specific to industry A 1.
p Rental price of nonspecific capital .25
Ky,  Capital stock B, nonspecific 10.
Ki Type B capital used by industry 1 3.177778
K:  Type B capital used by industry 2 4.622222
Kg Type B capital used by industry 3 2.2
w Wage rate 1.
L Total labour supply 5.
Lg Labour used in production by industry A .25
LZI1 Labour used in investment by industry A .042593
Lé, Labour used in investment by industry B .425926
L, Labour used by industry 1 264815
L,  Labour used by industry 2 3.466667
Ly  Labour used by industry 3 .55

... continued ...

162



Table Al: Variables in the Trial Data Set, continued

Symbol Definition , Value

P5  Price of raw capital goods 1.

P,  Price of good A 1.

P;  Price of good 1 1.

P, Price of good 2 1.

X5  Production of raw capital goods 1.1

X,  Production of good A .50

X;  Production of good 1 1.059259
X,  Production of good 2 4.622222
I Investment by industry A .1

L, Investment by industry B 1.

D, Dividends paid by industry A .121667
Dy,  Dividends paid by industry B 1.216667
C Private consumption 5.404500
G Government spending .776981

T%  Tax on wages 2

Tz Sales tax on good A 0.

Té Sales tax on good 1 0.

Tg Sales tax on good 2 0.

Tz Sales tax on good 3 0.

... continued ...
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Table Al: Variables in the Trial Data Set, continued

Symbol Definition Value
TR Transfer payments 2
Td  Dividend tax .10
TS  Investment subsidy .10
Y1 Technical change parameter, industry 1 .620403
Yo Technical change parameter, industry 2 1.240806
Ys  Technical change parameter, industry 3 1.
p*  Exogenous expectation, rental price .25
W*  Exogenous expectation, wage rate 1.
Pé Exogenous expectation, raw capital price 1.
Pz Exogenous expectation, price of good A 1.
TSX  Exogenous expectation, dividend tax rate .10
TSX  Exogenous expectation, investment subsidy .10
p®  Actual expectation, rental price .25
W€  Actual expectation, wage rate 1.
Pg Actual expectation, raw capital price 1.
Pg Actual expectation, price of good A 1.
Tde  Actual expectation, dividend tax rate .10
TS¢  Actual expectation, investment subsidy .10
r Interest rate .05
e Price deflator 1.

164



Table A2: Parameters in the Trial Data Set

Symbol Definition ‘ Value

6 Depreciation rate .10

8, Investment parameter, industry A 4.259259
8, Investment parameter, industry B 425926
g,  Labour exponent, industry A 5

gy Labour exponent, industry 1 .25

€5 Labour exponent, industry 2 .75

€3 Labour exponent, industry 3 .5
oczé Share of private consumption, good A .080887
oc(l; Share of private consumption, good 1 171360
a%; Share of private consumption, good 2 .. 747753
aé Share of government spending, good A .080887
ozé Share of government spending, good 1 .171360
a(z; Share of government spending, good 2 747753
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AZ2. The Model's Equations

This appendix lists the equations of the intertemporal

general equilibrium model as it was implemented for section (9).

For the most part, the equations appear exactly as they did in the

text. There are, however, several differences: the derivatives have

all been replaced by finite difference approximations, expected

variables have been explicitly used in the investment submodels,

and several vari-ables have been eliminated by algebraic

substitution. In addition, all of the expectation-generating

equations have been listed, not just the one for wages as in the text.

Where possible, the equations have been numbered as they were in

the text.
A2.1. The Investment Submodel

Short run profit on a unit of K,

1-¢ eaP:
’3 - ( a) W 1/(1-€a}w€

€a

Investment by sector A

I = 1 A’a _Pe
a = oweq, | (1-TI)(1-T5¢) "3

Equations of motion for industry A

Ag(t+h)-A,(t)

h = (r+8)ka - ﬁ(l—Tde)
K, {t+h)-K_ (t)
__Q.__.._H__a_._ = Ia _ aKa
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Investment by sector B

1 Ap €
L = - P3
b~ oweg, | (1-TI)(1-T5C)

Equations of motion for industry B

A (t+h) -2y (0

N = (r+8))y, - p&(1-Te)

K, (t+h)-K, (t)
b b
- ®n = L, - 3Ky,

A2.2, The General Equilibrium Submodel

Output of sector A

P 1_
X, = (Ly)a(K,)

Labour demanded for production in sector A
P (8P, B,
L, = (——W—- 1/(1 Sa)Ka

Labour demanded for investment by sector A

I 2

Pretax dividends of sector A

D, = P,X, - WLy, - (Pgl, + WLy) (1-T9)

Labour demanded by sector B

Ly = 8plp

Pretax dividends of sector B
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(6.23)

(6.24)

(7.4)
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Dy, = pKy, - (Paly, +WLp)(1-T9)
Labour demanded by sector i, ie{1,2,3)

1 pg; -
L=
! in‘(W(l-ei)J

Capital B demanded by sector i, i€{1,2,3}

i 1 (1‘€i) i
Kp = 2%, | ——
b 'Yle(wpei T

Zero-profit condition for sector i, ie{1,2}

i
XP; = WL + pKp

Zero-profit condition for sector 3

3 3

Labour market equilibrium condition

L=Lh+Lh+ly+L +Ly+1y

Capital B market equilibrium condition

2
K, = Kp + Kp + Ko

Consumption

C = WL{1-T%) + (D+Dp)(1-T9 + TR

Government spending

G = TI(D,+Dy) - TSP(I,+1,) + W(B,Io+6,12))
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(7.10)

(7.11)

(7.12)

(7.13)

(7.26)

(7.27)

(7.14)



+ T2P,X, + ToP|X; + ToXyPy + ToPgXs
+ TWWL - TR (7.18)
Market equilibrium for good i, i€ {A, 1,2}
P.X,(14T5) = acC + agG (7.22)-(7.24)
Market equilibrium for good 3
Xg =1, + 1 (7.25)

Price deflator

1 2
X P (1+TS)+X P, (14Tg)+X,Py(14Tg)

= a 1 ) {(7.28)
K P (1+T))y+X (P {1+T )+ X (Po(1+Tg))y
AZ2.3. Expectations Formation
Wages
We = (W)rn(wx)1-*n (8.1)

Rental price of capital B

pe = (p)kn(pX) 1-Apn

Price of output A

Py = (P,)*n(P})!-tn

Price of raw capital

P§ = (P5)*n(P3)!*n

Dividend tax
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Tde = (Td)xx(TdX) 1-Ax

Investment subsidy

TS¢ = (T8) lx(Tsx) 1-Ax
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