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Abstract

The model of endogenous economic growth developed by Paul Romer
(1990a) is briefly reviewed and modified by substituting a Solow type
consumption function in place of the utility maximising behaviour of
consumers. The dynamic system and steady-state growth path of this Solow-
Romer model are then derived. Such modification allows the dynamics of
the model, in response to certain economic shocks, to be examined in terms
of phase diagrams; and illustrates the instructional power of this approach.
The impacts of the same economic shocks are also analysed more directly
by numerical integration of the differential equations and boundary
conditions describing the dynamic system of the model.

Adjustment processes are found to be relatively lengthy; and to be
characterised by significant initial jumps or discontinuities in certain
variables. Furthermore, in some cases these initial jumps can be in the
opposite direction to that of the subsequent adjustment. Such results
emphasise the importance of explicit analysis of the dynamics of the
adjustment paths of growth models and their relevance for economic policy.
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Dynamic Analysis of a 'Solow-Romer'
Model of Endogenous Economic Growth

by

Gordon SCHMIDT

Monash University

1.  Introduction

Romer (1987 and 1990a) develops a model in which economic growth is endogenous. In
the long-run the economy expands along a balanced growth-path where all the main
variables exhibit constant and identical asymptotic rates of growth. The impact of various
possible shocks to the economy (reflected through changes to the model parameters) are
examined in terms of their effects on this long-run balanced growth rate. Such an approach
is one of comparative statics, and as such it ignores the dynamics of the economy's
adjustment from its pre-shock steady-state growth path to its ultimate post-shock one.

However, these dynamics are important for a number of reasons. The most obvious
questions begged by the comparative statics approach concern timing: How long will it be
until the new steady-state is (all but) reached? Will the paths of adjustment be gradual or
precipitate? How will the costs and benefits of change vary over the adjustment path and
how will they be shared between different economic agents? Clearly, a comparative statics
analysis of the steady-state equilibria can shed no light on such matters. More specific
issues of the dynamics arise from the fact that the adjustments of certain variables (usually
prices and flow variables such as consumption) are characterised by initial discontinuous
jumps. Furthermore, such jumps can be of the opposite sign to that of the subsequent
(smooth) adjustment path, with obvious welfare implications in terms of timing and the
gains and losses of different economic agents. Finally, as illustrated later in this article
(also see Barro & Sala-i-Martin, 1995), adjustment periods tend to be lengthy. Thus, given
the persistent and innumerable variety of shocks to which real economies are subject, it
seems likely that they may more often be in a process of adjustment than on a steady-state
growth path!

The purpose of this paper is to illustrate the dynamic behaviour of a 'Romer-like' model.
In particular, the technique of representing a dynamic system by its phase-space will be
employed to demonstrate diagrammatically the adjustment responses to a variety of
economic shocks. An analytical difficulty with the full Romer (1990a) model is its
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dimension. In its fundamental, balanced growth, form it comprises four coupled
differential equations in four variables. Clearly this could not be visualised
diagrammatically at all. The system can be transformed to a stationary one of three
differential equations in three variables, but it remains a difficult boundary value problem.
An initial value for one of the transformed variables is known, but only the asymptotic
steady-state values are known for the other two. Also, while the system can then be
represented pictorially with a three dimensional phase-space diagram, its analysis is messy
and difficult to visualise.

Instead, by taking the apparently retrograde step of specifying a simple Solow type
consumption function in place of the consumer optimising behaviour specified in the
Romer system, a modified model is developed with a stationary dynamic system of only
two variables, thereby allowing the phase-space to be constructed and examined in only
two dimensions. This is termed the Solow-Romer model, and it differs from its progenitor
in only a single aspect.1 Its supply side is exactly the same as that of the Romer model,
while on the demand side its consumption propensity is exogenous.

The structure of the paper is as follows: First, some background and a description of
Romer's model are presented in Section 2. Next, in Section 3 the dynamic system and its
steady-state are derived; and the phase-space of the system is constructed. Section 4 then
uses this phase-space to examine the adjustment response of the system to a variety of
economic shocks. In Section 5 the dynamics of the model are obtained by numerical
analysis and the results compared with those obtained via the examination of the phase-
space. Some concluding remarks are offered in the final section.

2.  Background and description

2.1  Background

The fundamentally different nature of technological innovations compared to that of most
economic goods plays a central role in Romer's (1990a) model. Technology, or knowledge,
has long been taken to exhibit public good characteristics. As an input to production it is
largely non-rival. A new design, a set of instructions, a computer program can all be used
without diminution by an indefinitely large number of agents as often as desired, and at
little additional cost once the (probably high) initial costs of development have been met.

                                           
1In fact, the S-R model is a particular parameterisation of the Romer model (See Kurz, 1968).
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Non-rivalry also carries a strong implication of non-excludability through externalities.
However, while external benefits and spillovers of knowledge are undoubtedly important
outcomes from innovative activity, the fact remains that much, perhaps most, innovative
activity is undertaken by private agents with the expectation of economic gain. The total
benefits from technological improvements and the generation of knowledge must therefore
be at least partially excludable. Consistent with this, growth in Romer's model is driven by
the intentional and endogenous accumulation of knowledge, which is non-rival and
partially excludable.

Non-rivalry in the technological input necessarily introduces a so called non-convexity
into the production function, which must show increasing returns in respect of all inputs
together. This can be readily demonstrated by a simple replication argument, noting that it
is not necessary to replicate non-rival inputs, (Romer, 1990b). This means that a price
taking equilibrium cannot hold unless technology is regarded as a public good, both non-
rival and completely non-excludable. Market power is necessary to achieve an
equilibrium in which technology is (at least) partially excludable (Schumpeter, 1942).
Following this, in Romer's model equilibrium is supported by monopolistic competition
among the producers of capital.

2.2.  Description

2.2.1  General

Romer's (1990a) model comprises four factors: capital, labour, human capital and
technology. Capital (K) is represented by a large variety of durable inputs available for
final goods production, with the extent of the variety (specifically, the number of different
types of capital) depending on the level of technology. The usual representation of
ordinary (unskilled) labour (L) is adopted. Knowledge is separated into a rival component
embodied in people − human capital (H) − and a non-rival technological component (A),
which is independent of individuals and can be accumulated without bound on a per capita
basis. Technology is represented as a stock of non-rival designs for the producer durables,
which grows over time with research effort. The designs are excludable in terms of their
direct use in the production of durables: For example they are patentable so that a durable
can only be produced by a firm which owns the design for it. However, in adding to the
general stock of design knowledge and contributing to subsequent designs, each design
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makes an indirect  contribution to production that is not excludable.2 Overall, technology is
only partially excludable.

Formally the model comprises three sectors.3 A research sector employs human capital
and the existing stock of knowledge to produce new knowledge in the form of designs for
new producer durables. A durable goods producing sector purchases the designs and uses
them with foregone consumption to produce a wide variety of capital goods. These are
then rented (or purchased) by a final goods sector, which uses them in conjunction with
labour and human capital, to produce final output which can either be consumed or saved4

(Figure 2.1).

2.2.2  Research sector

Aggregate production of designs is taken to be a deterministic function of the research
inputs of human capital and the existing total stock of design knowledge. Specifically, the
rate of increase of designs is:

&( ) ( ) ( )A t H t A tA= δ   (2.1)

where δ is a productivity parameter, and HA(t) is total human capital employed in
research. Note that the productivity of human capital in research is an increasing function
of accumulated knowledge.

2.2.3  Manufacture of capital goods

Given the designs, capital (in the form of durable producer goods) is produced directly out
of foregone consumption:

& ( ) ( ) ( )K t Y t C t= −   (2.2)

where Y(t) and C(t) are aggregate output and consumption respectively.

                                           
2While these externalities are undoubtedly highly relevant to the real world, they are not necessary to
generate growth endogenously (Romer, 1987).
3Actually, this is merely a convenience to facilitate understanding the flows and transfer prices
involved. A variety of institutional arrangements could apply.
4'Foregone consumption' is said to be used to produce capital. But such output is not actually
produced; rather, the resources which would have been necessary to manufacture it are devoted
instead to the production of capital. Given the existence of designs, the production technology for
capital goods is identical with that of final output.
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Figure 2.1  Diagrammatic representation of the Romer model
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The number of different types of durables increases as new designs are developed. At any
time t there are i = 1,2,.......,A(t) different types in existence, and there are Xi(t) units of
type i. Since the capital goods sector employs the same technology as that of final output,
it is possible to 'exchange' consumption goods for capital goods. If it requires η units of
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output to produce one unit of any of the different durable goods types, the aggregate
capital stock at time t is given by:

K t X K t X i t dii

A t

i

A t

( ) ( ) ( , )
( )( )

= = z∑
=

η η(t)     or,  ignoring indivisibilities     
00

  (2.3)

The knowledge represented by new designs is excludable in terms of its direct use in the
production of new durable goods (through the granting of infinitely lived patents for
example). Each design is the property of only a single firm which produces the
corresponding durable.

2.2.4  Production of final output

Labour (L), human capital (H), and physical capital (K) are the inputs to the production of
final output (Y). Overall, the production technology is assumed to be linearly
homogeneous. The unusual feature of the technology is that capital is disaggregated into
the list of all the different types of producer durables available (Xi(t), for i = 1,.......,A(t)).5

Aggregate (economy-wide) output is given by:

Y t g H t L X t Y t g H t L X i t diY i
i

A t

Y

A t

( ) ( ( ), ) ( ) ( ) ( ( ), ) ( , )
( ) ( )

= =∑ zγ γ    or    
0

  (2.4)

where HY(t) is the amount of human capital devoted to final goods production; and the
function g(.) is assumed to be homogeneous of degree (1-γ). Specifying g(.) as a 'Cobb-
Douglas' function:

g H t L H t LY Y( ( ), ) ( ) (1 ) (1 )(1 )= − − −α γ α γ   (2.5)

                                           
5In contrast to the usual practice of employing a single aggregate for capital, where different types are
implicitly assumed to be perfect substitutes, the approach adopted here means that different types of
capital have additively separable effects on output. Thus, there are two distinct ways in which capital
can grow: Extra units of already existing durable types can be added, and new types can be developed
and brought into use. Diminishing returns apply to the former type of capital accumulation but not to
the second. Even with aggregate capital (K) fixed, output can be increased by introducing new types;
that is, by raising A(t). However this is not costless: The range of capital types is constrained at any
time by the fixed costs of their production. It is optimal for all the different types of capital goods to be
used at the same level, so the productivity of every different type (including new ones as they are
designed) is constant. Although each type of capital good is different, they all produce identical effects
on output, and all exhibit the same diminishing returns.
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2.2.5  Market structures, prices and wages

The final output sector is characterised by competitive price taking and constant returns to
scale. Producers take rental prices p(i,t) for each durable i as given, and choose the
quantities X(i,t) to maximise profits at all times t. In aggregate the problem is:

Max g H t L X i t p i t X i t diY

A t

. [ ( ( ), ) ( , ) ( , ) ( , )]
( )

γ

0
z −

yielding the demand function:

p i t g H t L X i tY( , ) ( ( ), ) ( , )= −γ γ 1

Firms in the capital goods sector bid for the sole rights to manufacture durables according
to each new design. Thus, any particular type of durable is made by only a single firm,
which can charge a price greater than the (constant) marginal cost of producing the
durables. But monopoly power is restricted by the free entry of the bidding process, and
the rental market for durables is one of monopolistic competition. Having incurred the
fixed cost of purchasing a design, these firms take the demand functions for their durables
arising from the final goods sector as given, and set prices to maximise the excess of their
rental income over variable cost. The monopolist sector problem is:

Max i t p i t X i t r t X i t. ( , ) [ ( , ) ( , ) ( ) ( , )]π η= −

where r(t) is the interest rate denominated in final goods6, and so variable costs are
r t X i t( ) ( , )η  − the interest cost on the ηX(i,t) units of output needed to produce X(i,t)
durables. First order conditions yield the optimal monopoly levels of prices, quantities and
profits as:

X i t X t g H t L r tY( , ) ( ) [ ( ( ), ) / ( ) ] /(1 )= = −γ η γ2 1   (2.6)

p i t p t r t( , ) ( ) ( ) /= = η γ   (2.7)

π π γ( , ) ( ) ( ) ( ) ( )i t t p t X t= = −1   (2.8)

                                           
6Again since the production technology in the two sectors is exactly the same and goods can be
converted into capital one-for-one, r is also the rate of return on capital.
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Thus, all of the different types of durable goods available at any time will be supplied at
the same level (i.e. X i t X t( , ) ( )= ). This is also apparent from the symmetry of the model
specification.7 It follows from equation (2.3) that this level is:

X i t X t K t A t( , ) ( ) ( ) / ( )= = η   (2.9)

Competition among capital goods producing firms to obtain the rights to any new design
means that all the monopoly rents will be bid away. Thus, the research sector will be able
to extract prices for its designs equal to the present value of the monopoly rents associated
with each corresponding new capital good.8 At any time t the price of designs is given by:

p t e dA
t

t

r s ds
( ) ( )

( )
=

−zz
∞

τ

π τ τ

which can be solved by differentiating with respect to time to yield:

& ( ) ( ) ( ) ( )p t r t p t tA A= − π (2.10)

As for ordinary labour (L), total human capital (H) is taken to be constant in the model. It
is also considered to be homogeneous. In particular, there is no distinction between that
employed in research and that employed in the production of final output. Thus total
human capital in the model's economy is simply:

H H t H tA Y= +( ) ( ) (2.11)

Moreover, the returns to human capital will be the same in each sector. In research human
capital earns all the income, and to make one extra design ( &( ) )A t = 1  requires an amount
H t A tA( ) / ( )= 1 δ . Thus, its wage is:

w t p t A tH A( ) ( ) ( )= δ

                                           
7Furthermore, because of the usual diminishing returns in the production technology of the durables
sector, it would otherwise be possible to increase profits by diverting resources from high to low
output goods.
8The decision of whether to incur the costs of new research and development will therefore be based
upon (the expectation of) future monopoly rents exceeding such costs.
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Although some of the knowledge of designs is non-excludable, since every researcher is
free to exploit all the knowledge A(t), any benefits external to one researcher are captured
by others. In aggregate researchers collect all the benefits of the sale of designs.

Since the final output sector is competitive, human capital employed there receives the
value of its marginal product. Wages are thus:

w t
Y t

H t

g H t L

H t
X i t diH

Y

Y

Y

A t

( )
( )

( )

( ( ), )

( )
( , )

( )

= = z∂
∂

∂
∂

γ

0

Equating the two expressions for w tH ( )gives:

p t
g H t L

H t
A t X i t diA

Y

Y

A t

( )
( ( ), )

( )
( ) ( , )

( )

= − − zδ ∂
∂

γ1 1

0

(2.12)

2.2.6  Consumption

In the pure Romer model the pattern of consumption is derived from the maximisation of
the discounted sum of all future aggregate utility, subject to an aggregate budget
constraint.9 Here, a simple Solow type consumption function is specified:

C t s Y t( ) ( ) ( )= −1 (2.13)

where s is the (exogenously constant) propensity to save.

                                           
9Aggregate utility, a function of the consumption stream alone, is taken to display constant elasticity of
substitution time-preferences, and the solution to the problem yields a first order differential equation
in consumption. Since the optimisation takes place over an infinite horizon, all future consumers are
assumed to "always be governed by the same motives as regards accumulation" (Ramsey, 1928).
Families or dynasties of overlapping generations, each of which take account of the well-being of their
progeny, are usually postulated.
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3.  The dynamic system

3.1  Condensation of the model equations

The Solow-Romer model is fully specified by equations (2.1) to (2.13). It can be
condensed into a dynamic system of three first order differential equations, in the variables
A(t), K(t), and pA(t) as follows:

• substitute equation (2.11) into equation (2.1):

&( ) [ ( ) ( )] ( )A t H t H t A tY= −δ   (3.1)

• substitute equations (2.4), (2.6), (2.9) and (2.13) into equation (2.2) to produce:

& ( )
( )

( )K t s
r t

K t=
γ 2   (3.2)

• substitute equations (2.7), (2.8),and (2.9) into equation (2.10):

& ( ) ( ) ( )
( )

( )
[ ]p t r t p t

K t

A tA A= − −1 γ
γ

  (3.3)

where, substituting (2.5), and (2.9) first into equation (2.12), and then into equation (2.6)
also using the result from (2.12):

H t L K t A t p tY A( ) [
( )

[ ( ) / ( )] ( ) ](1 )(1 ) (1 )= − − − − − −α γ
δηγ

α γ γ α γ1 1

1

1   (3.4)

and

r t H t p t K t A tY A( )
( )

( ) ( )[ ( ) / ( )]=
−

−δγ
α γ

2
1

1
  (3.5)

However, this system is only 'quasi-stationary': pA(t) is asymptotically constant, but in
the limit A(t) and K(t) merely grow at constant proportional rates. It can be transformed to
a properly stationary system by defining the variable Ψ( ) ( ) / ( )t K t A t= , taking derivatives
and substituting. In this way the stationary "Solow-Romer model" is specified as a system
of just two (coupled) first order differential equations in the variables Ψ(t) and pA(t). as
follows:

& ( ) [ ( ) / ( )] ( )Ψ Ψt s r t H H t tY= − +γ δ δ2   (3.6)
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& ( ) ( )[ ( ) ( )]p t r t p t tA A= − −1 γ
γ

Ψ   (3.7)

where:

H t L t p tY A( ) [
( )

( ) ( ) ](1 )(1 ) (1 )= − − − − − −α γ
δηγ

α γ γ α γ1 1

1

1Ψ   (3.8)

and

r t H t p t tY A( )
( )

( ) ( ) ( )=
−

−δγ
α γ

2
1

1
Ψ   (3.9)

3.2  The steady-state

For the system to reach a balanced growth steady-state, both technology (A) and capital
(K) must grow at constant relative rates. From equations (3.1) and (3.2), the rates of
growth of A and K will be constant only if HY and r respectively are both constant. Then,
from (3.4) and (3.5) this requires pA and the ratio K/A (= Ψ) also to be constant. Thus,
setting each of (3.6) and (3.7) to zero and solving the stationary system generates the
steady-state values of the growth rate (g) and the other variables in terms of the parameters
and exogenous variables of the model:

H
H

sYss
S =

+1 ( / )αγ
(3.10)

H
H

s
g

H

sAss
S S=

+
=

+1 1( / ) ( / )αγ
δ
αγ

    and    (3.11)

r Hss
S

Yss
S= ( / )δγ α (3.12)

Ψss
S

Yss
SL H= − − − − −[ ](1 )(1 ) (1 )αγ

δηγ
α γ α γ γ1

1

1 (3.13)

pAss
S

ss
S= −1 γ

γ
Ψ (3.14)

3.3  Phase-space of the Solow-Romer system

In general, the phase-space of any dynamic system is defined by the loci of points for
which the first derivatives of each of the system's dependent variables (xi) with respect to
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its independent variable (t) are zero: dxi/dt = 0, i = 1,....,n. The intersections of the
hypersurfaces generated by such loci define regions of the phase-space for which the
'direction of motion' of each of the system's dependent variables can be ascertained. Also,
any point (in hyperspace) of common intersection of all the hypersurfaces defines a
steady-state of the system.

Since the Solow-Romer model comprises only two dynamic variables (neither of which
can be negative), its phase-space is the positive quadrant of the (Ψ,pA)-plane. Equations
(3.6) and (3.7) respectively generate the loci of points for which & ( )Ψ t = 0 and & ( )p tA = 0. In
particular:

& ( )Ψ t >
< 0 as:

C t C
p t

t
pA

A1 2 1 1 1 0Ψ
Ψ

( )
( )

( )
[ ] ( )γ α γ+ −− − >

<

where          (3.15)

C L H1

1 1 1 1 1= − − − − −α γ
η δγ

α γ α γ( ) ( )( ) ( )

C
s

2 1
=

−α γ( )
and

& ( ) ( ) ( )p t p t tA A
>
<

>
<

−
0

1
 as:   

γ
γ

Ψ          (3.16)

These expressions define the phase-space (or in this two-dimensional case the phase-
plane) of the Solow-Romer model. The directions of motion in the various regions of the
phase-plane can be seen directly from (3.15) and (3.16). Also, they can be further clarified
by partial differentiation of the two differential equations (3.6) and (3.7), from which it can
be shown that:

∂
∂

∂
∂

& &Ψ
Ψp

p

A

A< <0 0      and      

With this information the directions of change in both pA and Ψ are known for all points
in the phase space, and a phase diagram of the dynamic system may be drawn. This has
been done for a benchmark data set10 and with the savings rate set at s = 0.2. The results

                                           
10The benchmark data set was intended to reflect the rudiments of the relevant magnitudes for the
Australian economy: Australian National Accounts data over 1985-86 to 1994-95, indicate that the
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are presented in Figure 3.1, where the directions of change in pA and Ψ, in the (four)
different regions of the phase-space, are indicated by "corner arrows". From these it is
possible to draw streamlines11 of the motion from any point in the phase space. In turn
such streamlines indicate that the equilibrium (or steady-state) is one of saddle path
stability. It is only from those (Ψ, pA) couples which lie on the saddle path that the steady-
state can be reached. Even very small discrepancies from such points will cause the system
to diverge.

Figure 3.1 Phase space of the Solow-Romer model. Calculated for a benchmark data-set and savings rate of
 s=0.2.

                                                                                                                                                   
shares of total wages and returns to capital in GDP were about 56 per cent and 44 per cent
respectively. Similarly, Labour Force data indicate that of the nearly 8 million people employed,
some 1 million are classified as "professionals". These data formed the basis for setting γ=0.44,
H=1, and L=7. The 1/8 th share for the 'numbers of human capital workers' in total employment
was adjusted up to 1/4 for their share of total labour income in order to reflect their likely higher
productivity and wages. Thus the Cobb-Douglas income share parameter for human capital was set
as α=0.25. The benchmark value for the discount rate was chosen as ρ=0.03 (partly in order to put
the data set on an annual basis of measurement). Somewhat arbitrarily, the reciprocal of the
elasticity of intertemporal substitution was set at σ=0.6, and the cost of a unit of one of the capital
durables in terms of output was taken to be η=2.0. Finally, the value of the research productivity
parameter, δ, (which is not dimensionless but rather, depends on the units in which H is counted)
was adjusted so that the benchmark steady-state value of the interest rate, rss appeared a reasonable
annual figure: With δ set at 0.1 the benchmark data set then returned a steady-state interest rate of
rss= 6.25 per cent.
11The streamlines must cross the &Ψ = 0 locus with infinite slope and the &pA = 0  locus with zero

slope.
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4.  Dynamic response to economic shocks

Here the adjustment path of the Solow-Romer model in response to a variety of economic
shocks is examined. The system is considered to be initially in equilibrium at the steady-
state defined in Figure 3.1 (with the benchmark data set), and the effects of some sustained
and unanticipated shock imposed at time zero is simulated. The following illustrative
examples have been investigated:

• an increase in the savings rate, s, from 0.2 to 0.3;
• a rise in the productivity of researchers, as captured in the parameter δ, from 0.1 to

0.15; and
• an increase in the profit share of income, reflected through the parameter γ, from

44 per cent to 70 per cent.

4.1 Increase in the savings rate (s)

Since the savings rate is endogenous in the full Romer model any change in savings
behaviour would have to be simulated there via shocks to other, more fundamental,
parameters. Here it can be shocked exogenously, although it might still be thought of as
arising indirectly from, say, some policy initiative such as a change in the Government's
policy towards superannuation. In any event, an autonomous increase in the savings rate
could be expected to stimulate investment thereby raising the capital-technology ratio (Ψ)
and increasing the demand from the capital goods producing sector for new designs (&A).
Such an increase in demand could be expected to push up the price of designs (pA) until
sufficient research activity were stimulated to re-establish equilibrium between the growth
of capital and the growth of designs.

Thus, in terms of the model we would expect to observe increases in both Ψ(t) and pA(t).
Analysis of the phase space confirms this. The rise in the savings rate from 0.2 to 0.3 shifts
the &Ψ = 0 curve outwards and establishes both a new equilibrium and a new saddle path.
The results are shown in Figure 4.1: In order for the system to converge to the new steady-
state (SS2), it is necessary that it reach some state on the saddle path. However, since
Ψ(t)=K(t)/A(t) is a stock variable its evolution is (usually) continuous, with its immediate
post-shock value equal to its immediate pre-shock value (Ψ1ss).

Conversely, prices readily jump discontinuously. Thus, the dynamic response of the
Solow-Romer model to an increase in the savings rate is for the price of technology first to
jump from its initial level to some intermediate value (pA1ss to pA12) while the capital-
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technology ratio remains constant (at Ψ1ss); and then for both variables to adjust smoothly
along the saddle path towards the new steady-state of the system. The total adjustment
path is along (SS1, P12, SS2) as indicated in Figure 4.1.

4.2 Increase in the productivity of researchers (δδ)Increase in the savings rate (s)

This may be conceived of as arising from some government initiated measure of
microeconomic reform. In any event, such an increase in productivity would be expected
to raise the growth of research output and to lower its price. Thus, the capital-technology
ratio could be expected to fall until the declining price of designs eventually restrains their
growth and a new equilibrium is established. As before the adjustment path is composed of
two parts; the first is an instantaneous drop in the price of technology (necessary to reach
the saddle path of the dynamic system), and the second is a smooth transition towards the
new steady-state along the saddle path. The dynamic adjustment path is indicated in Figure
4.2 as (SS1, P12, SS2).

Figure 4.1 Phase plane analysis of the dynamic effects in the Solow-Romer model of a sustained rise
 in the savings rate (s) from 0.2 to 0.3 for a benchmark data-set.
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Figure 4.2 Phase plane analysis of the dynamic effects in the Solow-Romer model of a sustained rise in the
 productivity of researchers (δδ) from 0.1 to 0.15 for a benchmark data-set.

4.3 Rise in the profit share of income (γγ)
A rise in the profit share of income may be thought of, for example, as being due to some

change in government tax policy. Since the marginal product of capital depends positively
on the Cobb-Douglas parameter γ, it may also be readily thought of as arising from some
form of microeconomic reform. An increase in the productivity of capital would then be
expected to stimulate investment as producers moved around their transformation frontiers
substituting capital for labour. As in the first example, increases in both the capital-
technology ratio and the price of designs would follow. In terms of the model, the increase
in γ lowers the &pA = 0 locus and changes the shape of the &Ψ = 0 locus, raising it at the new
point of intersection. The most interesting feature of the dynamics is that although the final
equilibrium price of technology is greater than its original level, the initial response is a
discontinuous fall (Figure 4.3).
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Figure 4.3 Phase plane analysis of the dynamic effects in the Solow-Romer model of a sustained
rise in the profit share of income (γγ) from 0.44 to 0.7, for a benchmark data-set.

5.  Numerical analysis of the model
Analysis of the phase space of a dynamic model, of which the saddle path is the key

element, provides a highly instructive means of understanding the system's behaviour.
However, while the saddle path represents a solution to the dynamic model, it is one for
which time has been eliminated. Thus, phase space analysis cannot of itself provide
answers to the sorts of timing questions that were raised in Section 1. For those purposes
the model solution must take the form of providing explicit time paths for the model's
variables.12

Since only the simplest of non-linear differential equation systems permit 'closed form', or
complete analytical solutions (Roberts and Shipman, 1972), they must generally be solved
by numerical methods instead. The Solow-Romer model is no exception. Now, a solution
to the model is any set of time paths of the dynamic variables Ψ(t) and pA(t) which satisfy

                                           
12Determination of saddle paths and time paths for dynamic systems does not need to be
independent. Clearly, if a system can be solved to obtain time paths for all its dynamic variables,
then the time variable can simply be eliminated to generate the system's saddle path. Similarly,
given saddle paths, initial values for all variables can be obtained and time paths derived as
differential equation initial value problems (Mulligan and Sala-i-Martin, 1991)
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both the differential equations and the boundary conditions. The latter comprise an 'initial'
value condition for the stock variable Ψ(0)=K(0)/A(0) (=Ψ0 say), and a 'final' value
condition as described by the asymptotic or steady-state behaviour of the system.13 In
particular, the 'final' boundary value condition can be specified as pAss

S  (equations (3.10) to
(3.14)).

The problem then, is to find an initial value for pA (pA0) such that the evolution of pA(t)
and Ψ(t) as prescribed by the differential equations, allow the steady-state to be reached.
Such differential equation problems are known as two-point boundary value problems and
a common approach to solving them is the numerical integration method of shooting. In
this method an originally 'guessed' set of free initial values is iteratively updated according
to how accurately the subsequent integration satisfies the final value boundary conditions,
often transversality conditions (see Birkoff and Rota, 1969; Dixon et al., 1992: Keller,
1968; Press et al., 1986; and Roberts and Shipman, 1972).

The model was solved in this way for the same illustrative simulations as were previously
examined by the phase plane analysis of Section 4. Numerical solutions were obtained by
fixing the initial value of Ψ at its steady-state level for the benchmark data set (Ψ1ss in
Figures 4.1, 4.2, and 4.3), making appropriate adjustments to parameters or exogenous
variables to simulate the economic shock under consideration, and selecting initial values
for pA with which to shoot at the system's steady-state (or equivalently, its transversality
condition) by numerical integration.14

                                           
13More fundamentally, the final boundary value arises from what is called a transversality condition.
This is a necessary condition for the dynamic optimisation problem (for producers) which underlies the
model. It is this condition which forces the system to a steady-state and constrains the set of solutions
to saddle-paths. Thus, it is of fundamental importance in establishing both the long-run equilibrium or
steady-state behaviour of the model, and its transient dynamics.
14The fundamental approach of all numerical integration is that of using derivatives multiplied by step-
sizes to add small increments to the functions to be integrated. Effectively, the differential equations
are replaced by difference equation approximations (constructed from Taylor series expansions of the
primitive functions), and the integration effected through iterative application of these difference
equations. The simplest approach is "Euler's method" where all second order (and higher) step-size
terms from the Taylor expansion are simply ignored. However, this is generally considered to be of
more conceptual significance than of practical value. Superior and more sophisticated methods include
the modified mid-point method (or Gragg's method); the Runge-Kutta method; Richardson
extrapolations and the particular implementation of the Bulirsch-Stoer method; and predictor-corrector
methods (see Press et al., 1987; and Pearson, 1991). Nevertheless, in the current application the Euler
method (with a step-size of unity) was found to be highly accurate and was the method used. In
practice the transversality condition was assumed to have been met when pAt had remained constant
over (at least) t=250 to t=300. At that stage the other 'asymptotic variables' were also constant.
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The results are reported in Figures 5.1, 5.2 and 5.3 and in Table 5.1. Dynamic adjustment
paths for the rate of growth of output are provided in addition to those for the capital-
technology ratio and the price of technology. Despite the fact that time is an explicit
variable in the numerical integration solutions of the model while it is eliminated in the
phase space analysis, the agreement between these two analytical methods can be clearly
seen from a comparison of Figures 4.1, 4.2 and 4.3 with Figures 5.1, 5.2 and 5.3
respectively.

Figure 5.1 Dynamic effects from the Solow-Romer model of a (sustained) rise in the savings rate(s)
from 0.2 to 0.3 from time zero. 'Euler' method of numerical integration.
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Numerical integration reveals an interesting feature of the adjustment dynamics of the
model's growth rate. In the case of the simulated rise in the savings rate, while the growth
rate of the economy ends up being higher, virtually all of its adjustment path is one of
decline! The instantaneous response of the growth rate to the savings shock is a
discontinuous rise, but following that the growth rate declines gradually to its new steady-
state - a level which is between its pre-shock and immediate post-shock levels (Figure 5.1
and Table 5.1). In the 'increased profit share simulation', the growth rate also jumps
upwards initially and subsequently declines gradually to its new steady-state.
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Table 5.1 Initial jump effects and ultimate changes in steady-state levels in the S-R model for three
 simulated shocks (percentage changes).

   c variable of  Savings rate simulation (50% rise)          Research productivity simu-
               lation (50% rise)

   Profit share simulation (59.1% rise)

the S-R model tial jump (%) change in ss (%)tial jump (%) change in ss (%) Initial jump (%) Final change in ss (%
Ψ 0 53.6 0 -51.5 0 298
pA 22.8 53.6 -26.5 -51.5 -59.0 34.0

 Growth rate 25.9 13.4 33.5 50.0 7.3 -17.3

However in this case the new steady-state is less than the initial level. Thus here, although
the system's growth rate eventually declines, it initially jumps to a higher level and only
falls below its original (pre-shock) value after some time (Figure 5.3 and Table 5.1).
Specifically, the simulation indicates that it would be eleven years before the economy's
growth rate fell below its initial level.

Figure 5.2 Dynamic effects from the Solow-Romer model of a (sustained) rise in the productivity of
 researchers (δδ) from 0.1 to 0.15 from time zero. 'Euler' method of numerical integration.
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This brings us to an issue raised in Section 1; namely, that of the duration of the
adjustment process. It would seem that the greater the speed of approach of the economy
to a new steady-state, the less significance its transient dynamics would have for economic
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management.15 However, the evidence here is that adjustment can be relatively slow.
Based upon the capital/technology ratio the model exhibits a half-life of 17 years for the
savings simulation, 10 years for the research productivity simulation, and 40 years for the
profit share simulation.16 The measure of adjustment speed is based upon the
capital/technology ratio due to complications arising with the initial discontinuities in the
adjustment of the other variables. When such a variable initially jumps towards its final
equilibrium it will record an 'understated' half-life, while when the initial jump is away
from its new equilibrium the measured half-life will be exaggerated. For example, in the
research productivity simulation (Figure 5.2), with both the price of technology and the
growth rate initially jumping more than half way towards their final steady-states, both
would return half-lives of zero! Conversely, in the profit share simulation (Figure 5.3),
where both these variables initially jump in the opposite direction to their new steady-state,
they return half-lives of 82 and 33 years respectively!

6.  Concluding remarks

The modification of Romer's (1990a) model to the Solow-Romer version presented here
allowed the dynamic responses of the model to a variety of exogenous economic shocks to
be studied in terms of phase diagrams. This approach amounts to a pictorial representation
of the model and is a powerful analytical tool for understanding its operation (and thus
how it represents the real world); and for examining the relationship between its variables
as they adjust from one equilibrium towards another. However, since it involves the
elimination of the time variable, phase-space analysis is not particularly helpful in
answering the types of timing questions posed in Section 1. Numerical integration of the
model's dynamic system was undertaken for that purpose.

                                           
15This is leaving aside the whole issue of discontinuous jumps.
16The concept of a half-life refers to the time taken for the dynamic system to close half of the gap
between its initial and final steady-states. In addition to the figures here, work with the full Romer
model has indicated a capital/technology half-life of 33 years for a simulation in which the profit
share of total income (γ), was raised by 10 per cent (for a slightly different benchmark data set to
that used here).
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Figure 5.3 Dynamic effects from the Solow-Romer model of a (sustained) rise in the profit share of income
 (γγ) from 0.44 to 0.7 from time zero. 'Euler' method of numerical integration.
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Adjustment processes were found to be relatively lengthy; and to be characterised by
significant initial jumps or discontinuities in certain variables. Furthermore, it was found
that in some cases these initial jumps could be in the opposite direction to that of the
subsequent adjustment. Such results have important implications for economic policy: The
longer the adjustment period the greater the relevance of adjustment issues for economic
policy.17 Also, the phenomena of jumps means that economic change can have quite
precipitate effects, despite relatively protracted adjustment.

These matters emphasise the importance of explicit analysis of the dynamics of the
adjustment paths of growth models. Dynamic analysis would seem to have a much greater
potential for the provision of relevant policy advice than simply the comparative statics
examination of alternative equilibria.

                                           
17This is not to say that long term policy objectives should be compromised by short term adjustment
costs.
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