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Abstract

The model of endogenous economic growth developed by Paul Romer
(1990a) is briefly reviewed antchodified by substituting a Solow type
consumption function in place of thetility maximising behaviour of
consumers. The dynamic system atehdy-state growth path of ttg®low-
Romermodelare then derived. Suamodification allows the dynamics of

the model, in response to certain economic shocks, exdmained in terms

of phase diagrams; and illustrates the instructional power of this approach.
The impacts of the same economic shocks are also anahmeddirectly

by numerical integration of the differential equations and boundary
conditions describing the dynamic system of the model.

Adjustment processes ardound to be relatively lengthy; and to be
characterised by significaninitial jumps or discontinuities in certain
variables. Furthermore, in son@ases thesdnitial jumps can be in the
opposite direction to that of the subsequent adjustment. Such results
emphasise the importance of explicit analysis of the dynamics of the
adjustment paths of growth models and their relevance for economic policy.
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Dynamic Analysis of a 'Solow-Romer’
Model of Endogenous Economic Growth

by
Gordon $HMIDT
Monash University

1. Introduction

Romer (1987 and 1990a) develops a model in which economic growth is endogenous. In
the long-run the economy expands along a balanced growth-path where all the main
variables exhibit constant and identical asymptotic rates of growth. The impact of various
possible shocks to the economy (reflected through changes to the model parameters) are
examined in terms of their effects on this long-run balanced growth rate. Such an approach
IS one ofcomparative staticsand as such it ignores the dynamics of the economy's
adjustment from its pre-shock steady-state growth path to its ultimate post-shock one.

However, these dynamics are important for a number of reasons. The most obvious
guestions begged by the comparative statics approach concern titomdong will it be

until the new steady-state is (all but) reach&tf the paths of adjustment be gradual or
precipitate™How will the costs and benefits of changey over the adjustment path and

how will they be shared between different economic agents? Clearly, a comparative statics
analysis of the steady-state equilibria can shed no light on such matters. More specific
issues of the dynamics arise from the fact that the adjustments of certain variables (usually
prices and flow variables such as consumptare) characterised by initial discontinuous
jumps. Furthermore, such jumps can be of the opposite sign to that of the subsequent
(smooth) adjustment path, with obvious welfare implications in terms of timing and the
gains and losses of different economic agents. Finally, as illustrated later in this article
(also see Barro & Sala-i-Martin, 1995), adjustment periods tend to be lengthy giMens,

the persistent and innumerable variety of shocks to which real econaraissibject, it
seemdikely that theymay moreoften be in a process of adjustment than on a steady-state
growth path!

The purpose of this paper is to illustrate the dynamic behavioutRimaer-like' model.

In particular, the technique of representing a dynamic system pjaise-spacavill be
employed to demonstrate diagrammatically the adjustment responses to a variety of
economic shocks. An analytical difficulty with the full Romer (1990a) model is its



dimension. In its fundamental, balanced growth, form it comprises four coupled
differential equations in four variables. Clearly this could not be visualised
diagrammatically at all. The system can be transformed to a stationary one of three
differential equations in three variables, but it remains a difflmalindary valugroblem.

An initial value for one of the transformed variablekm®wn, but only the asymptotic
steady-state values akmown for the other two. Alsowhile the system can then be
represented pictorially with three dimensional phase-space diagram, its analysis is messy
and difficult to visualise.

Instead, by taking the apparently retrograde step of specifying a shhobdev type
consumption function in place of the consumer optimising behaviour specified in the
Romer system, a modified model is developed with a stationary dynamic system of only
two variables, thereby allowintpe phase-space to be constructed and examinedlyn

two dimensions. This is termed tB®low-Romer modeand it differs from its progenitor

in only a single aspettlts supply side i€xactly the same as that of the Romer model,
while on the demand side its consumption propensity iS exogenous.

The structure of the paper is &dlows: First, some background and a description of
Romer's model are presented in Section 2. Next, in Section 3 the dynamic system and its
steady-state are derived; and the phase-space of the system is constructed. Section 4 the
uses this phase-space to examine the adjustment response of the system to a variety ¢
economic shocks. In Section 5 the dynamics of the model are obtained by numerical
analysis and the results compared with those obtairethe examination of the phase-
space. Some concluding remarks are offered in the final section.

2. Background and description

2.1 Background

The fundamentally different nature of technological innovations compared to that of most
economic goods plays a central role in Romer's (1990a) model. Technology, or knowledge,
has long been taken to exhibit public good characteristics. As an input to production it is
largely non-rival. A new design, set of instructions, a computer program edlrbe used

without diminution by an indefinitely large number of agents as often as desired, and at
little additional cost once the (probably high) initial costs of development have been met.

1in fact, the S-R model is a particular parameterisation of the Romer model (See Kurz, 1968).



Non-rivalry also carries a strong implication of non-excludability through externalities.
However, while externdbenefits and spillovers of knowledgee undoubtedly important
outcomes from innovative activity, the fact remains that much, perhaps most, innovative
activity is undertaken by private agents with the expectation of economicTdirtotal
benefits from technological improvements and the generation of knowledgéhemasore

be at least partially excludable. Consistent with this, growth in Romer's model is driven by
the intentional and endogenous accumulation of knowledge, whictonsival and
partially excludable.

Non-rivalry in the technological input necessarily introduces a so called non-convexity
into the production function, which must shavereasing returns in respect of all inputs
together. This can be readily demonstrated by a simple replication argument, noting that it
IS not necessary to replicate non-rival inputs, (Romer, 1990b). This means that a price
taking equilibrium cannot hold unless technology is regarded as a public good, both non-
rival and completely non-excludable. Market power is necessary to achieve an
equilibrium in which technology igat least) partially excludable (Schumpeter, 1942).
Following this, in Romer's model equilibrium ssipported by monopolistic competition
among the producers of capital.

2.2. Description
2.2.1 General

Romer's (1990a) model comprises four factors: capital, labour, human capital and
technology. CapitalK) is represented by a large variety of durable inputs available for
final goods production, with the extent of the variety (specifically, the number of different
types of capital) depending on the level of technolofiye usual representation of
ordinary (unskilled) labourl() is adopted. Knowledge is separated into a rival component
embodied in people human capitali) — and a non-rival technological componeAj, (
which is independent of individuals and can be accumulated without bound on a per capita
basis. Technology is represented as a stock of non-rival designs for the producer durables
which grows over time with researefffort. The designs are excludable in terms of their
direct usein the production of durables: For example they are patentable so that a durable
can only be produced by a firm which owns the defigrit. However, in adding to the
general stock of design knowledge and contributing to subsequent designs, each desigr



makes arndirect contribution to production that is not excludab@verall, technology is
only partially excludable.

Formally the model comprisdbree sectors.A research sector employs human capital
and the existing stock of knowledge to prodoew knowledge ithe form of designs for

new producer durables. A durable goods produsexjor purchases the designs and uses
them with foregone consumption to produce a wide variety of capital gobdse are

then rented (or purchased) by a final goods seuwtbich uses them in conjunctiomith

labour and human capital, to produce final output which can either be consumed 6r saved
(Figure 2.1).

2.2.2 Research sector

Aggregate production of designs is taken to be a deterministic function of the research
inputs of human capital and the existing total stock of design knowledge. Specifically, the
rate of increase of designs is:

A() =3 H,() A() (2.1)
where & is a productivity parameter, anda(t) is total human capital employed in
research. Note that the productivity of human capital in research is an increasing function
of accumulated knowledge.
2.2.3 Manufacture of capital goods

Given the designs, capital (in the form of durable producer goods) is produced directly out
of foregone consumption:

K(t) =Y(t) - QY (2.2)

whereY (t) andC(t) are aggregate output and consumption respectively.

2While these externalitieare undoubtedifighly relevant to the real worldheyarenot necessaryto
generate growth endogenously (Romer, 1987).

SActually, this is merely a convenience to facilitatederstanding thdélows and transfer prices
involved. A variety of institutional arrangements could apply.

4Foregone consumption' is said to be usedptoduce capitalBut such output is notactually
produced; rather, the resourcehich would have been necessary to manufacturaret devoted
instead to the production of capit&iven the existence of designshe production technology for
capital goods is identical with that of final output.



Figure 2.1 Diagrammatic representation of the Romer model
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The number of different types of durables increaseewasdesignsre developed. At any

time t there are = 1,2,......A(t) different types in existence, and there (& units of

typei. Since the capital goods sector employs the same technology as that of final output,
it is possible to 'exchange' consumption goods for capital goods. If it requineiss of



output to produce one unit of any of the different durable goods types, the aggregate
capital stock at time t is given by:

A(t) A(t)

K(t) =r]ZXi (t) or, ignoring indivisibilities K(t) =n JX(i,t)di (2.3)

The knowledge represented Imgw designs is excludable in terms of its direct use in the
production of new durable goods (throutite granting of infinitely lived patents for
example). Each design is the property of only a single firm which produces the
corresponding durable.

2.2.4 Production of final output

Labour (), human capitalH), and physical capitaK( are the inputs to the production of

final output ). Overall, the production technology is assumed to be linearly
homogeneous. The unusual feature of the technology is that capital is disaggregated into
the list of all the different types of producer durables availaf(®,(fori=1,....... A5

Aggregate (economy-wide) output is given by:

A(t) A1)

YO=dH®O. DY X" or Y=g R() D[ Xy d (2.4)

whereH.(t) is the amount of human capital devoted to final goods production; and the
function g(.) is assumed to be homogeneous of defteg. Specifyingg(.) as a 'Cobb-
Douglas' function:

g(H, (1), L) = H, (1) LT (2.5)

5In contrast to theisual practice ofmploying a singleggregate for capital, whed#ferent types are
implicitly assumed to be perfect substitutd® approach adopted hareeans that different types of
capital have additively separable effectsomtput. Thus, there aréwo distinct ways in which capital
cangrow: Extraunits of already existing durable types caratlded, and new types can be developed
and brought into us@iminishing returnsapply tothe former type otapital accumulatiobut not to

the second. Even with aggregatpital K) fixed, outputcan be increased by introducing new types;
that is, by raisingA(t). However this ishot costless: The range of capital types is constrained at any
time by the fixed costs of their production. It is optimal for all the different types of cgpidks to be
used at thesame level, sahe productivity ofevery different typgincluding newones as they are
designed) is constant. Although each typeagitalgood isdifferent, theyall produceidentical effects

on output, and all exhibit the same diminishing returns.



2.2.5 Market structures, prices and wages

The final output sector is characterised by competitive price taking and constant returns to
scale. Producers take rental priget) for each durable as given, and choose the
guantities X(i,t) to maximise profits at all times t. In aggregate the problem is:

AD)

Max. [[d H,(9, ) X(i 9" = /(i X(i, )] di

yielding the demand function:
p(i,t) =y g(H, (1), L)X(i,t)" ™

Firms in the capital goods sector bid for swderights to manufacture durables according

to each new desigihus, any particular type of durable is madeobfy a single firm,

which can charge a price greater than fbenstant) marginal cost of producing the
durables. But monopoly power is restricted by the free entry of the bidding process, and
the rental market for durables is onembnopolistic competitianHaving incurred the

fixed cost of purchasing a design, these firms take the demand functions for their durables
arising from the final goods sector gigen, andset prices to maximise the excess of their
rental income over variable cost. The monopolist sector problem is:

Max. 1e(i,t) = [ p(i, t) X (i, t) = r X (i,b)]

where r(t) is the interest rate denominated in final gépdsd so variable costs are
rit)nX(,t) — the interest cost on theX(i,t) units of output needed to produli,t)
durables. First order conditions yield the optimal monopoly levels of prices, quantities and
profits as:

X(i,t) = X(t) = [y *g( H, (9, L) / r(t)n]"™"’ (2.6)
p(i,t) = p(t) = r()n/y (2.7)

m(i,t) =m() = A-y)p )X (1) (2.8)

6Again sincethe production technology in th&o sectors isexactly the same andyoodscan be
converted into capital one-for-one, r is also the rate of return on capital.



Thus, all of the different types of durable goods available at anywithbe supplied at
the same level (i.eX(i,t)= X(t)). This is also apparent from the symmetry of the model
specificatiort. It follows from equation (2.3) that this level is:

X(i,t) = X(t) = K(t) /nA(t) (2.9)

Competition among capital goods producing firms to obtain the rights toeamylesign

means that all the monopoly remisl be bid away.Thus, theresearch sectomwill be able

to extract prices for its designs equal to the present value of the monopoly rents associatec
with each corresponding new capital gédit. any time t the price of designs is given by:

2 - Tr(s)ds
p()=fe ™ mu)d
which can be solved by differentiating with respect to time to yield

Pa(D) = () A1) —T1(D) (2.10)

As for ordinary labourl(), total human capitaH) is taken to be constant in the model. It

is also considered to be homogeneous. In particular, there is no distinction between that
employed in research and that employed in the production of final output. Thus total
human capital in the model's economy is simply:

H = H,(t) + Hy(t) (2.11)
Moreover, the returns to human capital will be the same in each sector. In research human
capital earns all the income, and to make one extra d€&{®n=1) requires an amount

H,(t) =1/dA(t). Thus, its wage is:

Wi (1) = Pa(DOA(D

"Furthermore, because of theualdiminishingreturns in the production technology of ttierables
sector, it would otherwise bgossible to increase profits by divertingsourcedrom high to low
output goods.

8The decision of whether to incthie costs ohew research and developmenll wherefore be based
upon (the expectation of) future monopoly rents exceeding such costs.



Although some of the knowledge of designs is non-excludable, since every researcher is
free to exploitall the knowledge\(t), any benefits external to one researcher are captured
by others. In aggregate researchers collect all the benefits of the sale of designs.

Since the final output sector is competitive, human capital employed there receives the
value of its marginal product. Wages are thus:

oY(t) _ 9g(Hy(H),L) Ajt)x(i t)di
oH, (t) oH, (1) '

0

W, (1) =

Equating the two expressions for (t)gives:

L 0g(Hy (1), L) A

p.()=3 rL (0 A(t)‘l'([ X(i, t)" di (2.12)

2.2.6 Consumption

In the pure Romer model the pattern of consumption is derived from the maximisation of
the discounted sum of all future aggregate utility, subject to an aggregate budget
constrain® Here, a simpl&olowtype consumption function is specified:

CH=0-9¥Y} (2.13)

where s is the (exogenously constant) propensity to save.

9Aggregate utility, a function of the consumption stream alone, is takdisgiayconstanelasticity of
substitution time-preferences, and the solution tgotbblemyields afirst order differential equation
in consumption. Sincthe optimisationtakesplaceover aninfinite horizon, all future consumers are
assumed to "always bgoverned by thesame motives asegards accumulation” (Ramse}928).
Families ordynasties of overlapping generations, eacWwlath take account of theell-being of their
progeny, are usually postulated.
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3. The dynamic system
3.1 Condensation of the model equations

The Solow-Romermodel is fully specified by equations (2.1) to (2.13). It can be

condensed into a dynamic system of three first order differential equations, in the variables
A(t), K(t), andp,(t) as follows:

substitute equation (2.11) into equation (2.1):
A(t) =3[ H(t) - H, (D1 AD (3.1)

substitute equations (2.4), (2.6), (2.9) and (2.13) into equation (2.2) to produce:
K(t) = s% K(t) (3.2)

substitute equations (2.7), (2.8),and (2.9) into equation (2.10):

_ 1-y K@) 33
ACRCIEACRE s (3:3)

where, substituting (2.5), and (2.9) first into equation (2.12), and then into equation (2.6)
also using the result from (2.12):

Hy () = [% LI (t) / AD]Y pyl § 77000 (3.4)

and

rt) = (6y )H yOPADIK®) 7 9] (3.5)

However, this system is onlguasi-stationary': p,(t) is asymptotically constant, but in
the limit A(t) andK(t) merely grow atonstant proportional rates. It can be transformed to
a properly stationary system by defining the variab(e = K(t)/ A(t), taking derivatives
and substituting. In thigiay the stationary "Solow-Romer model" is specified as a system

of justtwo (coupled) first order differential equations in the varialbégy and p,(t). as
follows:

W(t) =[s r(t)/y2 —8H +3H, (] (1) (3.6)
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A (1) = (O PA(Y —1;/—Vw<t>] (3.7)
where:

H, 0 =[GV Ly P01 (3.8)
and

(0= H,@pOY)” (3.9)

a(l-y)

3.2 The steady-state

For the system to reach a balanced growth steady-state, both techiglagy (capital

(K) must grow atconstant relative rates. From equations (3.1) and (3.2)raties of

growth of A andK will be constant only ifH, andr respectively are both constant. Then,
from (3.4) and (3.5) this requirgwy and the ratidK/A (= W) also to be constant. Thus,
setting each of (3.6) and (3.7) to zero and solving the stationary system generates the
steady-state values of the growth rajeand the other variables in terms of the parameters
and exogenous variables of the model:

s H

_ 3.10

s H s oH
_ d = 3.11
s 1+(ay /s) and 9 1+(ay / 9) (3.11)
r - (6y /G)HYSS (312)

1

_[O(Y | (e y)H\?ssa(l v)l]T (3.13)
pisszquJss (314)

3.3 Phase-space of the Solow-Romer system

In general, the phase-space of any dynamic system is defined by the loci of points for
which the first derivatives of each of the system's dependent varigdlestly respect to
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its independent variable)(are zero:dx/dt = 0,1 = 1,...n. The intersections of the
hypersurfaces generated by such loci define regions of the phase-spadacforthe
‘direction of motion' of each of the system's dependent variables can be asceiMamed.

any point (in hyperspace) of common intersection of all the hypersurfaces defines a
steady-state of the system.

Since the Solow-Romer model comprises dmyg dynamic variables (neither of which
can be negative), its phase-space is the positive quadrant d¥ ié-f§lane. Equations
(3.6) and (3.7) respectively generate the loci of pointsvfach W(t) =0 and p,(t)=0. In
particular:

W(t) 2 0 as:

cw( [, 0+ -p, 2 0

where (3.15)
_a(d-y) | @o)(ty) a(ty)-1
=—— 17 H
o NG
c,=—2>
a(l-y)
and
. N . , 1-y
mmzow.moz77w0 (3.16)

These expressions define the phase-space (or in this two-dimensional cpbasie
plang of the Solow-Romer modeThe directions of motiorin the various regions of the
phase-plane can be seen directly from (3.15) and (3.16). Also, they can be further clarified
by partial differentiation of the two differential equations (3.6) and (3.7), from which it can
be shown that:

a—L|J<O and aﬁ<0
0p, oV

With this information the directions of change in bpthand¥ areknown for all points
in the phase space, and a phase diagram of the dynamic syaietve drawnThis has
been done for Aenchmarkdata sef and with the savingsate set as = 0.2. The results

10The benchmarlkdata set wasitended to reflect theudiments otthe relevantnagnitudes for the
Australian economy: Australian National Accoudtta over 1985-86 to 1994-95, indicate that the
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are presented ifigure 3.1, where the directions of changepjnand ¥, in the (four)
different regions of the phase-space, are indicated by "corner arrows". From these it is
possible to draw streamlirnéf the motion from any point in the phase space. In turn
such streamlines indicate that the equilibrium (or steady-state) is osaddfe path
stability. It is only from those'¥, p,) couples which lien the saddle path that the steady-
state can be reached. Even very small discrepancies from suchwilbintsise the system

to diverge.

Figure 3.1 Phase space of the Solow-Romer model. Calculated for a benchmark data-set and savings rate of
s=0.2.

504 pA=0

pA /
401

) !
30
Saddle path

0] L

P gq // '\ “P =0

Steady-state

101 Y I
0 10 ¥ss 20 30 40 g 50

shares oftotal wagesand returns to capital iGDP were about 56 per ceahd 44 per cent
respectively.Similarly, Labour Force data indicate that of thearly 8 million people employed,
some 1million are classified as "professionalsThese datdormed thebasisfor settingy=0.44,
H=1, andL=7. The 1/8 th share for tHeumbers of human capitalorkers' in totalemployment
was adjusted up to 1/4 for their sharetaifl labourincome inorder toreflect theirlikely higher
productivity and wages. Thus the Cobb-Doughe®me shar@arameter fohnuman capitalvas set
asa=0.25. Thebenchmark valuéor the discount rate was chosenpa$.03 (partly inorder to put
the data set on aannual basis of measurement). Sonew arbitrarily,the reciprocal of the
elasticity of intertemporal substitution wsest ato=0.6, and theost of a unit of one of theapital
durables in terms adutputwas taken to bg=2.0. Finally, the value ofthe research productivity
parameterd, (which isnot dimensionlesbut rather, depends on theits in whichH is counted)
was adjusted so that the benchmark steady-state value of the interesteqipeared a reasonable
annual figure: Withd set at 0.1 théenchmarldata set then returned a steady-state inteséstof
rss 6.25 per cent.

1The streamlines mustross thew =0 locus withinfinite slope and thep, =0 locus withzero

slope.
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4. Dynamic response to economic shocks

Here the adjustment path of the Solow-Romer model in response to a variety of economic
shocks is examined. The system is considered iaitily in equilibrium at the steady-

state defined in Figure 3.1 (with the benchmark data set), and the effects of some sustainec
and unanticipated shock imposed at time zero is simulated.folloeving illustrative
examples have been investigated:

an increase in the savings rate, s, from 0.2 to 0.3;

a rise in the productivity of researchers, as captured in the paramniten 0.1 to
0.15; and

an increase in the profit share of income, reflected through the paramitan
44 per cent to 70 per cent.

4.1 Increase in the savings rate (s)

Since the savings rate is endogenous in the full Romer model any chasgengs
behaviour would have to be simulatéuere via shocks toother, more fundamental,
parameters. Here it can be shocked exogenously, although it might still be thought of as
arising indirectly from, say, some policy initiative such as a change in the Government's
policy towards superannuation. In any event, an autonomous increase in the ssengs
could be expected to stimulate investment thereby raising the capital-technolog/jatio (
and increasing the demand from the capital goods producing sectwwadesigns 4).

Such an increase in demand could be expected to push up the price of degignsl(p
sufficient research activity were stimulated to re-establish equilibrium between the growth
of capital and the growth of designs.

Thus, in terms of the model weould expect to observe increases in Béth and p(t).
Analysis of the phase space confirms this. The rise in the savings rate from 0.2 to 0.3 shifts
the W =0 curve outwards and establishes both a new equilibrium and a new patidle

The results are shown in Figure 4.1: In orderthe system to converge to thew steady-

state (SS2), it is necessary that it reach some atatbe saddle path.However, since
W(t)=K(t)/A(t) is a stock variable its evolution is (usually) continuous, with its immediate
post-shock value equal to its immediate pre-shock vailss).

Conversely, prices readily jump discontinuously. Thus, the dynamic response of the
Solow-Romer model to an increase in the savings rate is for the price of technology first to
jump from its initial level to some intermediate value (pAlss to pAl2) whdecapital-
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technology ratio remains constant §4tss); and then for both variables to adjust smoothly
along the saddle path towards thew steady-state dhe system. The total adjustment
path is along (SS1, P12, SS2) as indicated in Figure 4.1.

4.2 Increase in the productivity of researchers®)Increase in the savings rate (s)

This may be conceived of as arising from some government initiated measure of
microeconomic reform. In any event, such an increase in productivity would be expected
to raise the growth of research output and to lower its price. Thus, the capital-technology
ratio could be expected to fall until the declining price of designs eventually restrains their
growth and a new equilibrium is established. As before the adjustment path is composed of
two parts; the first is an instantaneous drop in the price of technology (necessary to reach
the saddle path of the dynamic system), and the second is a smooth transition towards the
new steady-state along the saddle path. The dynamic adjustment path is indiEaeckin

4.2 as (SS1, P12, SS2).

Figure 4.1 Phase plane analysis of the dynamic effects in the Solow-Romer model of a sustained rise
in the savings rate (s) from 0.2 to 0.3 for a benchmark data-set.
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Figure 4.2 Phase plane analysis of the dynamic effects in the Solow-Romer model of a sustained rise in the
productivity of researchers 9) from 0.1 to 0.15 for a benchmark data-set.
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4.3 Rise in the profit share of incomey

A rise in the profit share of incomnmeay be thoughof, for example, as being due to some
change in government tax policy. Since the marginal product of capital depends positively
on the Cobb-Douglas parametgnt may also be readily thought of as arising from some
form of microeconomic reform. An increase in the productivity of capital would then be
expected to stimulate investment as producers moved around their transformation frontiers
substituting capital for labour. As in the first example, increases in both the capital-
technology ratio and the price of designs would follow. In terms of the model, the increase
in y lowers thep, =0 locus and changes the shape of#he0 locus, raising it at the new
point of intersection. The most interesting feature of the dynamics is that although the final
equilibrium price of technology is greater than its original level, the initial response is a
discontinuous fall (Figure 4.3).
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Figure 4.3 Phase plane analysis of the dynamic effects in the Solow-Romer model of a sustained
rise in the profit share of income ) from 0.44 to 0.7, for a benchmark data-set.
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5. Numerical analysis of the model

Analysis of the phase space of a dynamic model, of which the saddle path is the key
element, provides a highly instructive means of understanthi@gsystem's behaviour.
However, whilethe saddle path represents a solution to the dynamic model, it is one for
which time has been eliminated@hus, phase space analysis cannot of itself provide
answers to the sorts 6fning questionghat were raised in Section 1. For those purposes
the model solution must take the form of providing explicit time paths for the model's
variablest?

Since only the simplest of non-linear differential equation systems permit ‘closed form', or
complete analytical solutions (Roberts and Shipman, 1972), they must generally be solved
by numerical methods instead. T&elow-Romer model is no exception. Now, a solution
to the model is any set of time paths of the dynamic varidgsand p(t) which satisfy

12Determination of saddle paths anithe paths for dynamic systemsioes notneed to be
independent. Clearly, if a system can be solved to obtainpaties forall its dynamic variables,
then thetime variablecan simply be eliminated tgenerate thesystem's saddlpath. Similarly,
given saddle paths, initial valuder all variablescan be obtained and timgaths derived as
differential equation initial value problems (Mulligan and Sala-i-Martin, 1991)
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both the differential equations and the boundary conditions. The latter compliiséian
value condition for the stock variabM¥(0)=K(0)/A(0) (=¥, say), and a 'final' value
condition as described by the asymptotic or steady-state behaviour of the Syktem.
particular, the 'final' boundary value condition can be specifigef aéequations (3.10) to
(3.14)).

The problem then, is to find an initial value for (p,,) such that the evolution of,(t)
andW¥(t) as prescribed by the differential equaticaifgw the steady-state to be reached.
Such differential equation problems &reown astwo-point boundary value problenasd

a common approach to solving them is the numerical integration mettstwaiing.In

this method an originally 'guessaeét offree initial values is iteratively updated according

to how accuratelyhe subsequent integration satisfies final value boundary conditions
often transversality conditions (see Birkoff and Rota, 1969; Dixon et al., 1992: Keller,
1968; Press et al., 1986; and Roberts and Shipman, 1972).

The modelas solved in thigvay for the same illustrative simulations as were previously
examined by the phase plane analysis of Section 4. Numerical solutions were obtained by
fixing the initial value of¥Y at its steady-state levldr the benchmark data sé¥{ggin

Figures 4.1, 4.2, and 4.3), makiagpropriate adjustments to parameters or exogenous
variables to simulate the economic shock under consideration, and selecting initial values
for p, with which toshootat the system's steady-state (or equivalently, its transversality
condition) by numerical integraticn.

13More fundamentallythe final boundary value arises fromhat iscalled atransversality condition
This is a necessary condition fibke dynamicoptimisation problengffor producerswhich underlies the
model. It is this condition whicforces thesystem to ateady-state and constrains et of soltions

to saddle-paths. Thus, it is fuindamental importance in establishimgth the long-rurequilibrium or
steady-state behaviour of the model, and its transient dynamics.

14The fundamentadpproach ofll numericalintegration is that of using derivativeuultiplied bystep-
sizes toadd small increments tahe functions to be integrateffectively, the differential equations
are replaced bdifference equation approximatiomonstructedrom Taylor series expansions of the
primitive functions), andhe integration effected through iteratiagplication of thesealifference
equations. Theimplestapproach is "Euler's method" wheat second order (antigher) step-size
terms fromthe Taylorexpansionare simply ignored. Howevethis is generallyconsidered to be of
more conceptuaignificancethan of practical value. Superior and more sophisticated meihcidde

the modified mid-point method (or Gragg's method); the Runge-Kutta methddichardson
extrapolations and the particular implementation of the Bulirsch-Stoer method; and predictor-corrector
methods (see Press et al., 1987; and Pearson, 1991). Nevertheless, in thapplitatibnthe Euler
method (with a step-size of unity) was found to Highly accurate and was the method used. In
practice thetransversality condition was assumed to have been met whéadgp remaineadonstant
over (at least) t=250 to t=300. At that stage the other ‘asymptotic variables' were also constant.
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The results are reported in Figures 5.1, 5.2 and 5.3 and in Tab@yBdmic adjustment

paths for the rate of growth of output are provided in addition to those for the capital-
technology ratio and the price of technology. Despite the fact that time is an explicit
variable in the numerical integration solutions of the maddle it is eliminated in the

phase space analysis, the agreement between these two analytical methods can be clear
seen from a comparison of Figures 4.1, 4.2 and 4.3 with Figures 5.1, 5.2 and 5.3
respectively.

Figure 5.1 Dynamic effectsfrom the Solow-Romer model of a (sustainedjise in the savings rate(s)
from 0.2 to 0.3 from time zero. 'Euler' method of numerical integration.
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Numerical integration reveals an interesting feature of the adjustment dynamics of the
model's growth rate. In the case of the simulated rise in the savingahidgehe growth

rate of the economy ends up being highemtually all of its adjustment path is one of
decline! The instantaneous response of the growth rate to the savings shock is a
discontinuous rise, bdiollowing that the growth rate declines gradually tonesw steady-

state - devel which is between its pre-shock and immediate post-shock levels (Figure 5.1
and Table 5.1). In the ‘increased profit share simulation', the growth rate also jumps
upwards initially and subsequently declines gradually to its new steady-state.
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Table 5.1 Initial jump effects and ultimate changes in steady-state levels in the S-R model for three
simulated shocks (percentage changes).
c variable of Savirgs rate simulation (50% rise Research productiyisimu-  Profit share simulation (59.1% rise)
lation (50% rise)

the S-R model tial jump (%) change in ss (% jump (%) change in ss (%) Initial jump (% inal change in s
W 0 53.6 0 -51.5 0 298
pA 22.8 53.6 -26.5 -51.5 -59.0 34.0

Growth rate 25.9 134 335 50.0 7.3 -17.3

However in this case the new steady-state is less than the initial level. Thus here, although
the system's growth rate eventually declinesiiially jumps to a higher level and only

falls below its original (pre-shock) valugfter some time (Figure 5.3 and Table 5.1).
Specifically, the simulation indicates thatwbuld be eleven years before the economy's
growth rate fell below its initial level.

Figure 5.2 Dynamic effects from the Solow-Romer model of a (sustained) rise in the productivity of

researchers §) from 0.1 to 0.15 from time zero. 'Euler’ method of numerical integration.
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This brings us to an issue raised in Section 1; namely, that of the duration of the
adjustment process. It would seémat the greater the speed of approach of the economy
to a new steady-statie less significance its transient dynamics would fiaveconomic
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managemenrit However, the evidence here is that adjustment can be relasieiy
Based upon the capital/technology ratio the model exhilialfaife of 17 years for the
savings simulation, 10 years for the research productivity simulation, and 40 years for the
profit share simulatio®® The measure of adjustment speed is based upon the
capital/technology ratio due to complications arising with the initial discontinuities in the
adjustment of the other variables. When such a variable initially jumps towards its final
equilibrium it will record an 'understated’ half-lifehile whenthe initial jump isaway

from its new equilibriunthe measured half-lifevill be exaggerated. For example, in the
research productivity simulation (Figure 5.2), with both the price of technology and the
growth rateinitially jumping more than halivay towards their final steady-states, both
would return half-lives of zero! Conversely, in the profit share simulation (Figure 5.3),
where both these variables initially jump in the opposite direction to their new steady-state,
they return half-lives of 82 and 33 years respectively!

6. Concluding remarks

The modification of Romer's (1990a) model to 8@ow-Romer version presentbdre
allowed the dynamic responses of the model to a variety of exogenous economic shocks to
be studied in terms of phase diagrams. This approach amounts to a pictorial representatior
of the model and is a powerful analytical tool for understanding its operation (and thus
how it represents the real world); and for examining the relationship between its variables
as they adjust from one equilibrium towards another. However, since it involves the
elimination of the time variable, phase-space analysis is not particularly helpful in
answering the types of timing questions posed in Section 1. Numerical integration of the
model's dynamic system was undertaken for that purpose.

15This is leaving aside the whole issue of discontinuous jumps.

16The concept of &alf-life refers to theime taken for thedynamic system tcolosehalf of the gap
between itsnitial andfinal steady-states. In addition to tfigures herework with thefull Romer
model has indicated a capital/technold@ff-life of 33 years for asimulation in whichthe profit
share of totalncome §), was raised by 10 per cent (foslkghtly different benchmarkiata set to
that used here).
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Figure 5.3 Dynamic effects from the Solow-Romer model of a (sustained) rise in the profit share of income
(y) from 0.44 to 0.7 from time zero. 'Euler' method of numerical integration.

Solow-Romer model dynamics

psi(t), pA(t) Output growth (%)

60 7 o psi(t) 7
50 ] O pA(Y) ] 22

— Growth rate :
40 T 6.4
T+ 6.2

30 16
T 5.8
20 [TTITITIIIL] """'””””“”“””““I : 456
10 - 5.4
- 5.2

o —t+—————t——t+—+—+—+—+—+—t——+—F—+—+—+—+5
-10 0 10 20 30 40 50 60 70 80 90 100

Time (Years)

Adjustment processes were found to be relatively lengthy; and to be characterised by
significant initial jumps or discontinuities in certain variables. Furthermore, it was found
that in some cases these initial jumps could be in the opposite direction to that of the
subsequent adjustment. Such results have important implications for ecqudioycThe

longer the adjustment period the greater the relevance of adjustment issues for economic
policyl” Also, the phenomena of jumps means that economic change can have quite
precipitate effects, despite relatively protracted adjustment.

These matters emphasise the importance of explicit analysis of the dynamics of the
adjustment paths of growth models. Dynamic analysis would seem to have a much greater
potential for the provision of relevant policy advice ttsamply the comparative statics
examination of alternative equilibria.

17This isnot to say that longerm policy objectives should be compromiseddiort termadjustment
costs.
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