

Business and Economics

GEMPACK Release 12; Extending the GEMPACK computing framework.

Michael Jerie 7th October 2013 National CGE Modelling Workshop

New features & improvements for GEMPACK release 12

- coefficients more than 7 dimensions
- double-precision or single-precision real coefficients
- simplified declarations for coefficients and variables
- full support for Integer and String-valued coefficients
- headers of length greater than 4
- special characters in set element names
- Loops allowed in TAB files
- WRITE (TABLE) statements

New features & improvements, continued ...

- automated homogeneity testing
- mappings on LHS of Formulas
- new syntax for indices in product sets
- other improvements

Current progress

- The GP Fortran code base (command line programs) is now working and tested (TESTGP) on our test library of example models
- The GP Delphi code base Windows programs (ViewHAR, TABmate etc.) is in progress
- May be staggered introduction of new features
- Features may be revised or changed before official release
- Current timeline for release: 2nd half 2014.

Backwards compatibility

- Use of new features in GEMPACK release 12 can result in incompatibility between
 - older GEMPACK programs and new format data
 - older GEMPACK installations and TAB files using new features
- Use of GEMPACK release 12 programs with release 11 TAB code and data will produce outputs compatible with release 11, hence
 - safe to upgrade and run old simulations even if colleagues do not upgrade

Unified model of 12-dimensional coefficients

- **Real** coefficients may now have 12 dimensions
- String-valued (new) and Integer coefficients may also have 12 dimensions
- String and Integer arrays now displayed with row and column labels in ViewHAR
- Higher dimensional arrays of all types can be read from and written to HAR files
- The limit of 12 dimensions is provisional
- Variables remain limited to 7 dimensions

double or single-precision real coefficients

Choose at runtime (in CMF) to work with double-precision or single-precision reals

double precision = yes NO ; ! default is NO

Variables are still always single-precision (as in Release 11 and earlier).

Double precision data can be read from and written to HAR files.

Double-precision headers **cannot** be read by

- pre-Release 12 Windows programs eg. ViewHAR
- pre-Release 12 Fortran programs eg. GEMPACK utility programs like CMBHAR.EXE and Tablo generated-programs: mymodel.exe

Simplified syntax for declaring Coefficients and Variables

new syntax:

```
Coefficient V1MAR(COM,SRC,IND,MAR) # Margins,intermediate # ;
```

original syntax (still valid):

```
Coefficient (all,c,COM)(all,s,SRC)(all,i,IND)(all,m,MAR)
V1MAR(c,s,i,m) # Margins, intermediate # ;
```


String-valued coefficients

Declared via a statements like

```
Coefficient (strings length 10) COEF1(COM) ;
```

(where you must give the maximum length of the strings, 10 in this example)

- Values can be read from Header Array or GEMPACK text data files
- String-valued expressions can contain new string operators ++ and -+ and new function GPSTRING (converts numerical values to string).

Special characters in element names

- Set element names can now contain any printable ASCII characters Example with quoted strings
- SET MISC (food, "soft wheat", "dollars/tonne");
- Example with quoted strings in numbered list (declares set of size 12)
- SET GREEN ("green power1" "green power12");

Loops in TAB files

Loops in TAB files are allowed. Syntax:

```
LOOP (BEGIN) (All, index, set) ;
LOOP (END) (All, index, set) ;
```

Allowed statements inside a loop: **Formula**, **Assertion**, **Write** (to a text file), **Display** and **ZeroDivide** statements.

```
Example:
Set ITER (iter1-iter50) ;
Coefficient
RASMAT(COM,IND,REG) # matrix to be scaled # ;
COMTGT(COM) # target sums # ;
COMTOT(COM) # actual sums # ;
INDTGT(IND) # target sums # ;
INDTOT(IND) # actual sums # ;
COMERR(ITER) # commodity error # ;
```

Example continued next slide

MONASH University

Loops in TAB files, continued ...

```
→ Loop (Begin) (All,it,ITER) ;
  ! scale to meet COMTGT !
  Formula
  (all,c,COM) COMTOT(c) = sum{i,IND, sum{r,REG, RASMAT(c,i,r)}};
  COMERR(it) = sum{c,COM, ABS[COMTOT(c)-COMTGT(c)]}; !Loop index!
  WRITE COMERR(it) to terminal ;
  (all,c,COM)(all,i,IND)(all,r,REG)
  RASMAT(c,i,r) = RASMAT(c,i,r)*COMTGT(c)/COMTOT(c);
  ! scale to meet INDTGT !
  Formula
  (all,i,IND) COMTOT(i) = sum{c,COM, sum{r,REG, RASMAT(c,i,r)}};
  (all,c,COM)(all,i,IND)(all,r,REG)
  RASMAT(c,i,r) = RASMAT(c,i,r)*INDTGT(i)/INDTOT(i);
 Loop (End) (All,it,ITER) ;
```

```
Write RASMAT to file OUTFILE header "RASM";
Write COMERR to file OUTFILE header "CERR";
```

Write (TABLE) statements

- For writing tables of results using coefficients and variables.
- The tables produced are similar to those which can be produced via SLTOHT.

You can include in your TAB file statements of the form

```
Write (TABLE) CV1 [arguments] : CV2 : CV3 (etc)
```

where CV1,CV2,CV3 are the names of Coefficients or Variables and [arguments] are optional.

Example:

File (new, text, sse) OUTFILE ;
 Write (TABLE,postsim) ps(TRAD_COMM,REG) : VDPA : qo to file
 OUTFILE;

Example output table

File (new, text, sse) TABLEFILE ;
Write (TABLE, postsim) ps(TRAD_COMM,REG) : VDPA : qo to file
TABLEFILE ;

! Table with 3 columns of values ! Table has 9 rows which range over (TRAD_COMM:REG)

(TRAD_COMM:REC	ā) , ps, VDPA,	qo,	
(Food:SSA) ,	2.4682271,	72860.383,	4.7513504,
(Mnfcs:SSA) ,	0.92491913,	36972.715,	-2.5986686,
(Svces:SSA),	1.3363119,	81724.648,	-0.50867546,
(Food:EU) ,	-1.2509737,	522727.31,	-8.7879601,
(Mnfcs:EU) ,	-0.75542867,	644732.81,	1.5217779,
(Svces:EU) ,	-0.83183080,	3122112.5,	0.22927050,
(Food:ROW) ,	0.95366102,	1962397.0,	2.3031504,
<pre>(Mnfcs:ROW) ,</pre>	0.26435474,	1840952.1,	-0.55874717,
(Svces:ROW) ,	0.30450094,	8024520.0,	-6.35876954E-02,

Automated homogeneity testing

- In the TAB file declare a **VPQ type** (new syntax) for each variable
- In the CMF file use one of the commands
 - homogeneity check = real|nominal;
 - homogeneity simulation = real|nominal;
- homogeneity check checks each equation block, will tell you if any equation block has unbalanced units
- homogeneity simulation:
 - shocks are automatically calculated
 - the solution is compared with an automatically generated expected solution based on VPQ types
 - results reported in log file

Automated homogeneity testing, continued ...

In the TAB file specify VPQ types, Value, Price, Quantity, None or Unspecified, for variables

```
- individually, or
```

– using rules

```
! VPQ type in variable declaration !
Variable (VPQType=Quantity)
  (all,i,IND) x1cap(i) # Current capital stock #;
! VPQ type statement - ok anywhere in TAB file !
```

Variable (Name p1cap VPQType Price);

```
! Set VPQ type default rules !
Variable(begins x default VPQType Quantity) ;
Variable(begins f default VPQType None) ; ! shifters !
```

Example real homogeneity check report file (moln-rhomo-check.cmf)

😥 moln-rhomo-check-rhomo-check.har in C:\gp12-28aug13-lf95\examples							
<u>F</u> ile <u>C</u> ontents <u>E</u> dit Se <u>t</u> s Export I <u>m</u> port H <u>i</u> story <u>S</u> earch Aggregation <u>P</u> rograms <u>H</u> elp							
None - AccFle -	All CondEqNames 👻 All SummaryInfo 👻						
EqSummary	1 AllTerm1Not	2 MaxError	3 RelEqSum	4 RelEqRat	5 RelEqSumABS Total		
1 HOUSCOTION	1.000000	0	0	0	2.000000 3.000000		
2 EXPORTDEMAND	1.000000	0	0	0	1.000000 2.000000		
3 INDOUTPUT	1.000000	0	0	0	2.000000 3.000000		
4 INTUSECOM	1.000000	0	0	0	2.000000 3.000000		
5 INTUSELAB	1.000000	0	0	0	2.000000 3.000000		
6 INTUSECAP	1.000000	0	0	0	2.000000 3.000000		
7 ZPPROFPROD	1.000000	0	0	0	0 1.000000		
8 ZPPROFEXP	1.000000	0	0	0	0 1.000000		
9 ZPPROFIMP	1.000000	0	0	0	0 1.000000		
10 MARKCLCOM	1.000000	1.862645E-0009	-3.725290E-0009	1.862645E-0009	2.000000 3.000000		
11 MARKCLLAB	1.000000	0	0	0	2.000000 3.000000		
12 MARKCLCAP	1.000000	0	0	0	2.000000 3.000000		
13 IMPORTS	1.000000	1.490116E-0008	-2.980232E-0008	1.490116E-0008	2.000000 3.000000		
14 IMPORTVELS	1.000000	1.862645E-0008	-3.725290E-0008	1.862645E-0008	2.000000 3.000000		
15 EXPORTS	1.000000	5.587935E-0009	1.117587E-0008	5.587935E-0009	2.000000 3.000000		
16 TRADEBCE_A	1.000000	5.364418E-0009	5.364418E-0009	1.277242E-0008	0.4200000 1.420000		
17 TRADEBCE_F	1.000000	5.364418E-0009	5.364418E-0009	1.277242E-0008	0.4200000 1.420000		
18 CONSPRNDEX	1.000000	0	0	0	0 1.000000		
19 WAGEINTION	1.000000	0	0	0	0 1.000000		
20 REALCOTION	1.000000	0	0	0	2.000000 3.000000		
Total	20.00000	5.170703E-0008	-4.887581E-0008	6.652304E-0008	25.84000 45.84000 +		
0000 Size: CondEqNames * SummaryInfo Summary across all condensed eq. First col=1 if all terms used							

😹 MONASH University

Mapping on LHS of a Formula

In some cases, set mappings are allowed on the LHS of a Formula

- sets must be non-intertemporal sets
- mapping must be from a subset to a superset

Example:

```
Subset SUBCOM is subset of COM;
Mapping SUBCOM_2_COM from SUBCOM to COM ;
Read (BY_ELEMENTS) (all,c,SUBCOM) MAR2COM(c) from file MAPS header
"SC2C" ;
```

! next is ok so long as SUBCOM_2_COM is 1-to-1 !
Formula (all,c,SUBCOM) COEF(SUBCOM_2_COM(c)) = COEF2(c) ;

Indices over a product set

New syntax allows an index from a product set to be interpreted as a pair, eg. index i in SETX x SETY, i interpreted as i=(x,y).

The new syntax is

- allowed on both sides of a Formula
- allowed in Equations
- requires projection mappings of the product set be defined
- simplifies formulas and makes computation with sparse matrices more efficient
- context determines when the index is interpreted as a pair

Indices over a product set, continued ...

```
Set COUNTByZONE = COUNTIES x ZONES ;
```

```
Coefficient POPCZ(COUNTIES,ZONES) ;
Coefficient GDPCZ(COUNTIES,ZONES) ;
! POPCZ(cz) interpreted as POPCZ(c,z) !
! GDPCZ(cz) interpreted as GDPCZ(c,z) !
```

```
Set CZPOPOBS = (all, cz, COUNTByZONE : POPCZ(cz) > 0 );
Coefficient POPCZB(CZPOPOBS) ;
Formula (all,cz,CZPOPOBS) POPCZB(cz) = POPCZ(cz) ;
```

Assertion

```
(all,c,COUNTIES)(all,z,ZONES: POPCZ(c,z) = 0) GDPCZ(c,z) = 0;
```

```
Coefficient TOTGDP # Total GDP # ;
Formula TOTGDP = SUM[cz,CZPOPOBS, GDPCZ(cz)] ;
```

Other improvements

- Memory saving: "Just-when-needed" memory allocation may allow GEMSIM or a TABLO-generated program to run in less memory than was the case for Release 11.
- More flexible formula (initial)s. Conditions allowed on LHS.
- SEEHAR and SUMHAR have some more command line options.
- MODHAR: it is easier to add or modify set and element labelling on the output Header Array file.

