

Solving intertemporal CGE model in parallel using Singly Bordered Block Diagonal ordering technique^{*}

Pham Van HaProf. Tom Kompasha.pham@anu.edu.autom.kompas@anu.edu.auCrawford School of Public PolicyANU College of Asia & the Pacific

Melbourne, 7 October 2013

* Preliminary, not for citation

SBBD solution

PVH-TFK - 1 / 26

ANU CRAWFORD SCHOOL	Contents
INTRODUCTION SOLUTION METHODS	INTRODUCTION
FOR CGE MODELS SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM INTER-TEMPORAL CGE MODEL AND SBBD FORM NUMERICAL	SOLUTION METHODS FOR CGE MODELS
	SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM
	INTER-TEMPORAL CGE MODEL AND SBBD FORM
	NUMERICAL ANALYSIS
	CONCLUSION
REFERENCES	REFERENCES

ANU RAWFORD SCHOOL	
INTRODUCTION The Rationale	
SOLUTION METHODS	
SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM	
INTER-TEMPORAL CGE MODEL AND SBBD FORM	INTRODUCTION
NUMERICAL ANALYSIS	
CONCLUSION REFERENCES	

The Rationale

INTRODUCTION

The Rationale

SOLUTION METHODS FOR CGE MODELS

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

REFERENCES

Inter-temporal CGE models are big and difficult to solve.

- Solution to CGE model usually involves solution of a big first order derivative matrix of a non-linear system.
- The most popular CGE software packages in the market now are GEMPACK and GAMS, but they rely on serial matrix solvers, which have limited power in solving very big models.
- The paper proposes a direct reordering method for the first order differential matrices arising from the CGE models' solution. The ordering method facilitates parallel solution of the matrices and, therefore, reduces computing time for the solution of inter-temporal CGE models.

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

The GEMPACK's linearize method The GAMS's iterative methods

Parallel solution

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

REFERENCES

SOLUTION METHODS FOR CGE MODELS

PVH-TFK - 5 / 26

The GEMPACK's linearize method

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS The GEMPACK's linearize method The GAMS's iterative methods

Parallel solution

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

REFERENCES

The GEMPACK's linearize method involves linear approximation and Richardson extrapolation.

$$x_1 = x_0 + f_x^{-1} f_y dy$$
 (1)

GEMPACK use the direct serial solver MA48 or MA28 from The HSL Mathematical Software Library (see HSL, 2013).

More accurate result can be obtained by "chopping" down the shock.

Advantage of the method is faster solution speed and the user can control the speed and accuracy by changing the number of sub-steps.

The downside is no convergence guarantee, the user should check for convergence of the solution.

The GAMS's iterative methods

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

The GEMPACK's linearize method The GAMS's iterative methods

Parallel solution

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

REFERENCES

- GAMS is a flexible system and how it solve the model depends on the solver involved.
- PATH (Ferris and Munson, n.d.; Dirkse and Ferris, 1995) and MILES Rutherford (n.d.) or optimiser MINOS (Bruce et al., n.d.) are the usual choices for CGE modelers.
- PATH is Newton-based solver. PATH uses LUSOL (Saunders et al., 2013) as a linear system solver to solve the system involving Jacobian matrix. LUSOL is a serial direct linear system solver.
- MINOS is an optimisation solver, CGE model can be solved by setting-up non-linear constraints and a dummy objective function.
- MINOS also uses LUSOL for Jacobian matrix solution.

Parallel solution

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

The GEMPACK's linearize method The GAMS's iterative methods

Parallel solution

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

REFERENCES

To our knowledge, current CGE software packages use serial solver to solve big linear system.

The idea of parallel solution in CGE modelling has been introduced in GEMPACK version 10, but the parallel resources are used only to solve different steps at the same time, not for joint solution of a linear system.

The parallel software libraries are available but they can not employ special feature of CGE models to solve efficiently.

We will introduce Singly Bordered Block Diagonal ordering method to solve inter-temporal CGE models efficiently.

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

SBBD matrix How it can be solved fast in parallel

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

REFERENCES

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

SBBD solution

PVH-TFK - 9 / 26

ANU CRAWFORD SCHOOL SBBD matrix

■ The Singly Bordered Block Diagonal matrix:

(2)

(3)

How it can be solved fast in parallel INTER-TEMPORAL CGE MODEL AND

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

DIRECT METHOD FOR SOLVING LINEAR

SBBD MATRIX AND

SBBD FORM

NUMERICAL ANALYSIS

SYSTEM

SBBD matrix

CONCLUSION

REFERENCES

The linear equation system will have the form:

$$\begin{pmatrix} A_1 & & C_1 \\ & A_2 & & C_2 \\ & & \ddots & & \ddots \\ & & & A_K & C_K \end{pmatrix} \begin{pmatrix} x_1 \\ & x_2 \\ & & \ddots \\ & & x_K \\ & & & x_L \end{pmatrix} = \begin{pmatrix} b_1 \\ & b_2 \\ & & b_K \end{pmatrix}$$

How it can be solved fast in parallel

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

SBBD matrix How it can be solved fast in parallel

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

REFERENCES

Factorisation individual sub-matrices (see Duff and Scott, 2004, for more details):

$$\begin{pmatrix} A_i & C_i \end{pmatrix} = P_i \begin{pmatrix} L_i \\ \widetilde{L}_i & I \end{pmatrix} \begin{pmatrix} U_i & \widetilde{U}_i \\ & S_i \end{pmatrix} Q_i$$
(4)

Forward elimination:

$$P_{i} \begin{pmatrix} L_{i} \\ \widetilde{L}_{i} & I \end{pmatrix} \begin{pmatrix} y_{i} \\ \widetilde{y}_{i} \end{pmatrix} = \begin{pmatrix} \hat{b}_{i} \\ \widetilde{b}_{i} \end{pmatrix}$$
(5)

And solve interface problem:
$$\tilde{y}_i$$
 will be summing-up to form the right hand side \tilde{y}_L and S_i to S .

$$Sx_L = \widetilde{y}_L \tag{6}$$

PVH-TFK –

Backward substitution:

$$U_i Q_i x_i = y_i - \tilde{U}_i Q_i x_L$$

SBBD solution

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND SBBD FORM Inter-temporal CGE model First order differential matrix and SBBD form

NUMERICAL

ANALYSIS

CONCLUSION

REFERENCES

INTER-TEMPORAL CGE MODEL AND SBBD FORM

PVH-TFK - 12 / 26

Inter-temporal CGE model

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND

SBBD FORM

Inter-temporal CGE

model

First order differential matrix and SBBD form

NUMERICAL

ANALYSIS

CONCLUSION

REFERENCES

$x_t = f(x_t, z_t, \lambda_t, y_l) \tag{8}$

$$z_t = k(x_t, z_t, \lambda_t, y_l)$$
(9)

$$\dot{\lambda} = h_t(x_t, z_t, \lambda_t, y_l) \tag{10}$$

$$y_l = g(z_t, \lambda_t, y_l) \tag{11}$$

ANU CRAWFORD SCHOOL	First order differential matrix and SBBD form
INTRODUCTION SOLUTION METHODS FOR CGE MODELS SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM INTER-TEMPORAL CGE MODEL AND SBBD FORM Inter-temporal CGE model First order differential matrix and SBBD form NUMERICAL ANALYSIS CONCLUSION REFERENCES	$\begin{pmatrix} f_{x_t}^1 & f_{z_t}^1 & f_{\lambda_t}^1 & f_{y_l}^1 \\ k_{x_t}^1 & k_{z_t}^1 & k_{\lambda_t}^1 & h_{y_l}^1 \\ h_{x_t}^1 & h_{z_t}^1 & h_{\lambda_t}^1 & h_{y_l}^1 \\ 0 & g_{z_t}^1 & g_{\lambda_t}^1 & g_{y_l}^1 \end{pmatrix} $ (12)

ANU CRAWFORD SCHOOL			
SOLUTION METHODS FOR CGE MODELS			
SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM			
INTER-TEMPORAL CGE MODEL AND SBBD FORM	NUM	IERICAL ANAL	YSIS
NUMERICAL ANALYSIS Inter-temporal CGE model			
Direct ordering vs no ordering			
Direct ordering vs automatic ordering (MC66)			
Serial computing performance			
Parallel computing performance			
The accuracy of FDM			
CONCLUSION			
REFERENCES			

ANU CRAWFORD SCHOOL	Vietnamese regional inter-temporal CGE model				
		Table 1: M	odel descriptio	ns	
FOR CGE MODELS	ID	Mode's Size	Number	Number of	Number of
SBBD MATRIX AND DIRECT METHOD FOR			of en-	exogenous	non-zeros
SOLVING LINEAR SYSTEM			dogenous	variables	
INTER-TEMPORAL CGE MODEL AND			variables		
	1	3 sectors, 3 commodities, 8	246833	55467	779466
		regions and 10 time periods			
model Direct ordering vs no	2	3 sectors, 3 commodities, 8	1144433	257067	3614846
ordering Direct ordering vs	-	regions and 50 time periods			
automatic ordering (MC66)	3	8 sectors, 8 commodities, 8	5720368	1298272	16806197
Serial computing	4	regions and 50 time periods	00400000	7044470	70000044
Parallel computing	4	28 sectors,28 commodities,	26422686	/9441/0	70680341
The accuracy of FDM		8 regions and 20 time peri-			
CONCLUSION		OOS			
REFERENCES	Sourc	ce: Author's calculation.			

Note: The Vietnamese CGE model is from (Ha and Kompas, 2009).

PVH-TFK - 16 / 26

PVH-TFK – 17 / 26

ANU CRAWFORD SCHOOL	Direct ordering vs no ordering
	Figure 2: The reordered matrix.
SOLUTION METHODS FOR CGE MODELS SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM INTER-TEMPORAL CGE MODEL AND SBBD FORM NUMERICAL ANALYSIS Inter-temporal CGE	He and the second secon
model Direct ordering vs no ordering Direct ordering vs automatic ordering (MC66) Serial computing performance Parallel computing performance The accuracy of FDM <u>CONCLUSION</u> <u>REFERENCES</u>	in the second se

Note: Matrix drawing function from PETSC (Balay et al., 1997, 2012b,a).

PVH-TFK – 18 / 26

ANU CRAWFORD SCHOOL	Direct ordering vs automatic ordering (MC66)						
INTRODUCTION SOLUTION METHODS FOR CGE MODELS				Table 2:	Matrix orderi	ng	
SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR		10		Net	cut	Row Dif	ference
SYSTEM INTER-TEMPORAL		ID	No. of blocks	HSL_MC66	Direct reordering	HSL_MC66	Direct reordering
SBBD FORM		1	11	595	719	0.01%	0.00%
NUMERICAL ANALYSIS		2	51	3011	3359	1.01%	0.00%
Inter-temporal CGE model		3	51	26563	7399	62.94%	0.00%
Direct ordering vs no ordering		4	21	failed	9579	failed	0.00%
automatic ordering vs (MC66)	Source: Author's calculation.						
Serial computing performance		Note: HSL_MC66 is an ordering function from HSL (2013).					
Parallel computing performance							
The accuracy of FDM							

CONCLUSION

REFERENCES

ANU CRAWFORD SCHOOL	Serial computing perform	rmance	
SOLUTION METHODS	Tab	le 3: Calculation time in sec	
SBBD MATRIX AND DIRECT METHOD FOR	ID HSL_MC	66 + Direct reordering +	MA48
SOLVING LINEAR SYSTEM	HSL_MP48	HSL_MP48	
	1 4.517	662 2.111207	1.533605
SBBD FORM	2 30.507	7594 10.647396	21.338317
NUMERICAL ANALYSIS	3 245.775	494 116.342514	541.252467
Inter-temporal CGE model	4 fa	ailed 2090.518025	13664.878297
Direct ordering vs no ordering	Source: Author's calculation	on.	
Direct ordering vs automatic ordering (MC66)	Note: HSL_MC66, HSL_M	P48, and MA48 are from HS	SL (2013).
Serial computing performance			
Parallel computing			
The accuracy of FDM			
CONCLUSION			
REFERENCES			
SBBD solution			PVH-TFK – 20 / 26

ANU CRAWFORD SCHOOL	Parallel computing performance				
SOLUTION METHODS	_	Table 4: Parallel computing performance.			
SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM		3 processes on	4 machines and	4 machines and	4 machines and
		machine 1	4 processes	6 processes	10 processes
INTER-TEMPORAL	1	1.353008	0.740006	0.666306	0.791391
SBBD FORM	2	6.719306	4.142068	3.615683	3.855334
NUMERICAL ANALYSIS	3	67.698225	37.883721	31.359824	36.274224
Inter-temporal CGE model	4	1226.153309	635.964948	450.738670	528.355081
Direct ordering vs no ordering Direct ordering vs automatic ordering (MC66) Serial computing performance Parallel computing	Sour	ce: Author's calcula	ation.		

The accuracy of FDM

CONCLUSION

REFERENCES

SBBD solution

Source: Author's calculation.

PVH-TFK - 22 / 26

ANU CRAWFORD SCHOOL		
SOLUTION METHODS FOR CGE MODELS		
SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM		
INTER-TEMPORAL CGE MODEL AND SBBD FORM	CONCLUSION	
NUMERICAL ANALYSIS		
CONCLUSION		
Concluding remarks		
REFERENCES		

Concluding remarks

INTRODUCTION

SOLUTION METHODS FOR CGE MODELS

SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR SYSTEM

INTER-TEMPORAL CGE MODEL AND SBBD FORM

NUMERICAL ANALYSIS

CONCLUSION

Concluding remarks

REFERENCES

The direct reordering matrix into SBBD form method proves to be very efficient in solving inter-temporal CGE model in parallel.

- The efficiency of the method depends on the interface matrix. Researchers can try to substitute out variable y_l to reduce the interface problem.
- Nevertheless, the size of interface matrix will increase moderately as the finite grid size increases, hence our method will be efficient in solving inter-temporal CGE models.

ANU CRAWFORD SCHOOL			
INTRODUCTION SOLUTION METHODS FOR CGE MODELS SBBD MATRIX AND DIRECT METHOD FOR SOLVING LINEAR			
SYSTEM INTER-TEMPORAL CGE MODEL AND SBBD FORM NUMERICAL ANALYSIS	REFE	RENCES	
CONCLUSION <u>REFERENCES</u> Cited References			

ANU CRAWFORD SCHOOL	Cited References
INTRODUCTION SOLUTION METHODS FOR CGE MODELS	Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, <i>Modern Software Tools in Scientific Computing</i> , pages 163–202. Birkhäuser Press, 1997
SBBD MATRIX AND	Satish Balay, Jed Brown, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.3, Argonne National Laboratory, 2012a
SOLVING LINEAR SYSTEM	Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page, 2012b. http://www.mcs.anl.gov/petsc
INTER-TEMPORAL CGE MODEL AND SBBD FORM	A. Murtagh Bruce, A. Saunders Michael, Murray Walter, and E. Gill Philip. Minos. MINOS Solver Manual, http://www.gams.com/solvers/solvers.htm, Accessed date: 5 April 2013, n.d
	Steven P. Dirkse and Michael C. Ferris. The path solver: A non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software, 5:123–156, 1995
	Michael C. Ferris and Todd S. Munson. Path 4.7. PATH Solver Manual, http://www.gams.com/dd/docs/solvers/path.pdf, Accessed date: 3 October 2013, n.d
REFERENCES	lain S. Duff and Jennifer A. Scott. A parallel direct solver for large sparse highly unsymmetric linear systems. ACM Trans. Math. Softw., 30(2): 95–117, June 2004. ISSN 0098-3500. doi: 10.1145/992200.992201. URL http://doi.acm.org/10.1145/992200.992201
Cited References	Pham Van Ha and Tom Kompas. Xay dung mo hinh can bang tong the dong lien vung cho nen kinh te Viet Nam. Chuyen de nghien cuu cap Vien, Vien Khoa hoc Tai chinh, Hoc vien Tai chinh, Bo Tai chinh, 2009
	HSL. A collection of fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk, 2013
	Michael Saunders, Philip Gill, Walter Murray, Margaret Wright, Michael O'Sullivan, Kjell Eikland, Yin Zhang, and Nick Henderson. Lusol: Sparse Iu for ax = b. Dept of Management Science and Engineering (MS&E), Stanford University, Online at: http://www.stanford.edu/group/SOL/ software/lusol.html, Accessed: 6 April 2013, 2013
	Thomas F. Rutherford. Miles. MILES Solver Manual, http://www.gams.com/dd/docs/solvers/miles.pdf, Accessed date: 3 October 2013, n.d