Regulatory reform of the QLD sugar industry

www.oesr.qld.gov.au

Presentation at the Melbourne CGE workshop
September 2004

The contents of this paper should not necessarily be taken to represent the opinions, views or policies of the Queensland Government or the Queensland Treasury.

OESR: Knowledge Leaders for Smarter Decision Making
Overview

• Background on OESR’s analysis of Sugar industry regulatory reform
• Adapting (modifying) QGEM to address the policy issue
• Methodology
 – PE inputs => inputs for SR
 – SR scenario => inputs for LR
 – LR scenario
Sugar industry example

• Background to this policy issue
 – Centre of International Economics -2002

• The policy scenario
 – 20% increase in cane yields
 – Abolishing cane production area system
 – Potential 30 week milling system
 – 20% reduction in harvesting costs
 – 10% reduction in cane transport costs
Policy analyst’s role

1. Interpreting the policy question
2. Choosing a model
3. Setting up the model
4. Calculating shocks
5. Running simulations and interpreting results
6. Writing reports and delivering presentations
Critical policy features

- Measures of economic impact
- Identifying the structure of sugar sector
- Regulations affecting the sugar sector
- Conceptual viewpoint on suitability of CGE model for the policy issue
Need for CGE analysis?

• Why NOT just rely on PE modelling?
• Take PE results and impose on CGE by endogensing Supply and Demand relationships
• Take initial PE shocks and impose on CGE using our Supply and Demand relationships
• Hybrid-approach
Modifications to QGEM

- Disaggregation of industry detail
- Add a ‘Top-down’ procedure (MRES)
- Modelling methodology
 - Incorporating PE outputs as simulation inputs to QGEM
 - Incorporating QGEM results from one simulation as inputs to another simulation
Industry disaggregation

• Separated out 4 new industries and commodities (H,SC,SM,R)

• This modification to the database provides several benefits
 – Provides data on the commodity flows & input structures that exactly matches the CIE data
 – Supports an industry structure that will allow us, once we have the theory, to model which agent acquires the benefit from each individual piece of the regulatory changes
MRES procedure

• MRES provides a theoretical structure that will support our goal of using the spatial breakdown of PE results for the various sugar-related industries

• Appendix B, Table B1
 – List of Statistical Divisions
 – Split of targeted & non-targeted Div’s
 – List of Sugar industries targeted for each Div (Harvesting, Sugar Cane farming, Sugar Milling, Refining)
Modelling methodology

• Modification in what sense?
 – Using information from PE to switch off various supply and demand relationships

• Addresses two key requirements
 – Incorporate external productivity estimates
 – Appropriate treatment to allocate income flows to factors of production and between vertically-integrated chain
Results determined by?

- PE data incorporated into QGEM simulations
- Our methodology for incorporating this PE data
- QGEM’s theoretical structure and database
Modelling methodology

- Two simulations
- Differentiated by our choice of closure
- The SR policy scenario closely resembles the PE analysis
- The LR policy scenario still draws heavily on the PE analysis but allows nominal values to vary according to relationships determined in QGEM
Shortrun simulation (p19)

- Start with SR closure (Section 3.4)
- Determine PE data to be used as QGEM targets (Table 1)
- Reversing MRES to import the PE model’s spatial detail
- Decide which component of QGEM’s theoretical structure needs to be ‘switched-off’ for each PE target value
<table>
<thead>
<tr>
<th>QGEM component</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queensland Harvesting Industry</td>
<td></td>
</tr>
<tr>
<td>Harvesting costs</td>
<td>-20.00</td>
</tr>
<tr>
<td>Queensland Sugar Cane Growing Industry</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>52.87</td>
</tr>
<tr>
<td>Land quantity</td>
<td>25.33</td>
</tr>
<tr>
<td>Land productivity (yield)</td>
<td>-21.97</td>
</tr>
<tr>
<td>Payments to labour</td>
<td>27.84</td>
</tr>
<tr>
<td>Labour productivity</td>
<td>-35.74</td>
</tr>
<tr>
<td>Capital quantity</td>
<td>25.33</td>
</tr>
<tr>
<td>Transport costs between the Sugar Cane and Sugar Milling Industries</td>
<td>-10.00</td>
</tr>
<tr>
<td>Queensland Sugar Milling Industry</td>
<td></td>
</tr>
<tr>
<td>Quantity of foreign exports</td>
<td>62.80</td>
</tr>
<tr>
<td>Payments to labour</td>
<td>41.28</td>
</tr>
<tr>
<td>Labour productivity</td>
<td>-22.98</td>
</tr>
<tr>
<td>Capital quantity</td>
<td>21.33</td>
</tr>
<tr>
<td>Capital productivity</td>
<td>-2.89</td>
</tr>
</tbody>
</table>
Shortrun simulation -3

- Table C1 provides full list of swaps
- Swaps common to all Sugar-related IND’s
 - Exogenise DIV output targets achieved by targeting (n-1) Div’s; and
 - Endogenising automatic link to State total
 - Exogenise switch that forces State result to be weighted sum of DIV results; and
 - Endogenise automatic link to National industry output
 - this allows us to target regional activity story provided by the CIE
E_z_div_A #
Output of national industries at Statistical divisions #
(All, j, NATIND_DIV) (All, d, STATDIV)

\[z_{\text{div}}(j, d) = z(j, "QLD") + ff_{z_{\text{div}}}(j) + f_{z_{\text{div}}}(j, d) \]

SWAP \(z_{\text{div}} = f_{z_{\text{div}}} \);

E_dsum_nat
Adding up rule for loc-nat industries:
dsum_nat normally end. and zero #
(All, j, NATIND_DIV)

\[dsum_{\text{nat}}(j) = z(j, "QLD") - \sum_{d, \text{STATDIV}} \text{DIVSHR}(j, d)*z_{\text{div}}(j, d) \]

SWAP \(dsum_{\text{nat}} = ff_{z_{\text{div}}} \);
Shortrun simulation -5

- Sugarcane Harvesting
 - Exogenise basic price (-20%)
 - Endogenising all-input technical chg
 - Note that this allows us to target
 Harvesting efficiency changes passed
 onto Sugar-farmers identified by the CIE
Shortrun simulation -6

- Sugarcane Farming example
 - Output targets by Statistical Division achieved by targeting (n-1) divisions and endogenising State total
 - Endogenising demand for sugarcane which normally would be determined via demand for Sugar Milling output (SM intermediate-input tech chg)
 - Note that this allows us to target Sugar Mill efficiency changes CIE identified
Shortrun simulation -7

- Sugarcane Farming
 - Employment target achieved by endogenising labour productivity
 - Target for factor returns to labour achieved by switching-off standard QGEM wage-pricing rule to allow divergence from other industries
 - Note that we are targeting Quantify and Value of labour identified by the CIE
Shortrun simulation -8

• Mechanical task of running simulation and recording results (including the endogenised variables which will be switched in the LR simulation)

• Sugarcane farming example
 – PE employment target of 11.09% achieved via endogenous 21.97% improvement in labour productivity
Longrun simulation -1

- Start with LR closure (section 3.4)
- Decide which component of QGEM’s theoretical structure needs to be ‘switched-off’ for each PE target value
- For the LR we believe QGEM is better suited, than PE model, to estimate
 - Some elements of sugar industries
 - Impacts on broader economy
Longrun simulation -2

• Still targeting real variables identified in PE model
• Allowing nominal value to vary in accordance with CGE relationships
 – Take endogenously determined supply and demand shifts from SR
 – Impose as shocks in the LR simulation allowing ‘traditional’ endogenous variables to be determined by QGEM
Longrun simulation -3

- Table C3 provides list of swaps where:
 - variable was ENDOGENOUSLY determined in Short Run simulation
 - variable is EXOGENOUS and shocked in Long Run simulation
 - Long Run shock value determined in the SR simulation
Longrun simulation -4

- Swaps targeting SR values
 - Harvesting: Exogenise all-input tech chg (SR p0a)
 - Sugarcane Farming: Exogenise Labour saving tech chg Endogenising employment (allowing exit from the industry for those owner-occupiers who don’t have LR profitability)
 - Sugar Milling: Exogenise Labour saving tech chg (SR employment)
 - Sugar Milling: Exogenise Capital saving tech chg (SR capital rentals)
Conclusion

- Two simulations approach allowed OESR to make use of PE analysis
- LR sim allows CGE to determine economic chgs in wider economy whilst incorporating sufficient endogeneity to allow the economy-wide effects to have feedback effects on sugar-industries
- SR raw sugar price (p0a = -2.68%)
- LR raw sugar price (p0a = -3.62%)
Regulatory reform of the QLD sugar industry

www.oesr.qld.gov.au

Presentation at the Melbourne CGE workshop
September 2004

OESR: Knowledge Leaders for Smarter Decision Making